High-resolution single-photon imaging with physics-informed deep learning

深度学习 计算机科学 噪音(视频) 人工智能 图像分辨率 像素 光子 物理 计算机视觉 光学 图像(数学)
作者
Liheng Bian,Haoze Song,Lintao Peng,Xuyang Chang,Xi Yang,Roarke Horstmeyer,Lin Ye,Chunli Zhu,Qin Tong,Dezhi Zheng,Jun Zhang
出处
期刊:Nature Communications [Springer Nature]
卷期号:14 (1) 被引量:4
标识
DOI:10.1038/s41467-023-41597-9
摘要

High-resolution single-photon imaging remains a big challenge due to the complex hardware manufacturing craft and noise disturbances. Here, we introduce deep learning into SPAD, enabling super-resolution single-photon imaging with enhancement of bit depth and imaging quality. We first studied the complex photon flow model of SPAD electronics to accurately characterize multiple physical noise sources, and collected a real SPAD image dataset (64 × 32 pixels, 90 scenes, 10 different bit depths, 3 different illumination flux, 2790 images in total) to calibrate noise model parameters. With this physical noise model, we synthesized a large-scale realistic single-photon image dataset (image pairs of 5 different resolutions with maximum megapixels, 17250 scenes, 10 different bit depths, 3 different illumination flux, 2.6 million images in total) for subsequent network training. To tackle the severe super-resolution challenge of SPAD inputs with low bit depth, low resolution, and heavy noise, we further built a deep transformer network with a content-adaptive self-attention mechanism and gated fusion modules, which can dig global contextual features to remove multi-source noise and extract full-frequency details. We applied the technique in a series of experiments including microfluidic inspection, Fourier ptychography, and high-speed imaging. The experiments validate the technique's state-of-the-art super-resolution SPAD imaging performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
逐风给逐风的求助进行了留言
2秒前
科研通AI5应助灌饼采纳,获得30
2秒前
Owen应助Zzzzzzzzzzz采纳,获得10
3秒前
4秒前
5秒前
巫马秋寒应助笑点低可乐采纳,获得10
5秒前
xuex1完成签到,获得积分10
5秒前
情怀应助阳光的雁山采纳,获得10
7秒前
斯文败类应助jy采纳,获得10
7秒前
7秒前
日月轮回发布了新的文献求助10
8秒前
36456657应助木香采纳,获得10
9秒前
无花果应助ns采纳,获得30
9秒前
刘铭晨完成签到,获得积分10
9秒前
10秒前
YY发布了新的文献求助10
10秒前
Rrr发布了新的文献求助10
11秒前
学术蠕虫发布了新的文献求助10
11秒前
11秒前
miumiuka完成签到,获得积分10
12秒前
个性的薯片应助lyt采纳,获得20
14秒前
sweetbearm应助寒涛先生采纳,获得10
15秒前
wanci应助YY采纳,获得10
16秒前
16秒前
17秒前
17秒前
18秒前
HC完成签到 ,获得积分10
19秒前
姚姚的赵赵完成签到,获得积分10
19秒前
JamesPei应助大豪子采纳,获得30
20秒前
jy发布了新的文献求助10
20秒前
20秒前
陆靖易发布了新的文献求助10
20秒前
LQW完成签到,获得积分20
21秒前
22秒前
plant完成签到,获得积分10
22秒前
lyt完成签到,获得积分10
22秒前
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808