A Physical Law Constrained Deep Learning Model for Vehicle Trajectory Prediction

弹道 可解释性 计算机科学 过程(计算) 深度学习 编码器 人工智能 数据建模 机器学习 天文 数据库 操作系统 物理
作者
Hanchu Li,Ziyi Liao,Yikang Rui,Linchao Li,Bin Ran
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 22775-22790 被引量:7
标识
DOI:10.1109/jiot.2023.3305395
摘要

Vehicle trajectory prediction is crucial and indispensable for ensuring the safe and efficient operation of autonomous vehicles in complex traffic environments. The application of Internet of Things technology in the collaborative automated driving system (CADS) has established a robust data foundation for vehicle trajectory prediction. Accurate prediction requires not only a substantial amount of high-quality data but also a deep understanding of the vehicle's driving characteristics and interactions between neighboring vehicles. To enhance the study of vehicle trajectory prediction, this article proposes a novel Social Force-constrained Gated Recurrent Unit (SF-GRU) model, which integrates data-driven and physics-driven models. Specifically, the SF-GRU model is based on the gated recurrent unit encoder–decoder framework and incorporates social force constraints to enhance and supplement the model input based on vehicle time-series trajectory data, which describes the driving and interactive behaviors of vehicles during driving, as well as the interactions between neighboring vehicles and the surrounding environment. The model is trained and validated using the next generation simulation data set. Experimental results demonstrate that the SF-GRU model outperforms existing state-of-the-art models in both longitudinal and lateral motion, and that social force constraints are more effective than spatial variables in improving prediction accuracy. Furthermore, the SF-GRU model can intuitively and accurately consider the interactions between vehicles, and precisely describe the changes of relevant variables in the prediction process, thus enhancing the interpretability of the data-driven model. The SF-GRU model has great potential in vehicle trajectory prediction and can provide important support for the practical implementation of autonomous driving vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Three完成签到,获得积分10
刚刚
如果多年后完成签到 ,获得积分10
刚刚
SYLH应助solobang采纳,获得10
1秒前
SYLH应助solobang采纳,获得10
1秒前
灰色与青完成签到,获得积分10
1秒前
852应助幸福胡萝卜采纳,获得10
1秒前
虞无声应助年华采纳,获得10
1秒前
2秒前
香菜发布了新的文献求助10
3秒前
hf发布了新的文献求助10
3秒前
5秒前
爱听歌长颈鹿完成签到,获得积分20
5秒前
852应助抓恐龙采纳,获得10
5秒前
6秒前
小小鱼完成签到,获得积分10
6秒前
6秒前
单薄的小鸽子完成签到,获得积分10
7秒前
8秒前
charon完成签到,获得积分20
8秒前
bkagyin应助fff采纳,获得10
8秒前
小宇发布了新的文献求助10
9秒前
9秒前
1111发布了新的文献求助10
9秒前
单薄凌蝶完成签到,获得积分10
10秒前
10秒前
哄哄完成签到,获得积分10
10秒前
求知若渴完成签到,获得积分10
10秒前
ysf完成签到,获得积分10
11秒前
如意航空完成签到,获得积分10
12秒前
洛杉矶的奥斯卡完成签到,获得积分10
12秒前
yxy完成签到,获得积分10
12秒前
12秒前
Anoxia完成签到,获得积分10
13秒前
wangwenzhe完成签到,获得积分20
13秒前
KX完成签到,获得积分10
13秒前
意大利完成签到,获得积分10
13秒前
weiwei完成签到,获得积分10
13秒前
迟大猫应助波波采纳,获得10
13秒前
Rebekah完成签到,获得积分10
14秒前
躺平科研大叔完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678