亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Physical Law Constrained Deep Learning Model for Vehicle Trajectory Prediction

弹道 可解释性 计算机科学 过程(计算) 深度学习 编码器 人工智能 数据建模 机器学习 物理 天文 数据库 操作系统
作者
Hanchu Li,Ziyi Liao,Yikang Rui,Linchao Li,Bin Ran
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 22775-22790 被引量:7
标识
DOI:10.1109/jiot.2023.3305395
摘要

Vehicle trajectory prediction is crucial and indispensable for ensuring the safe and efficient operation of autonomous vehicles in complex traffic environments. The application of Internet of Things technology in the collaborative automated driving system (CADS) has established a robust data foundation for vehicle trajectory prediction. Accurate prediction requires not only a substantial amount of high-quality data but also a deep understanding of the vehicle's driving characteristics and interactions between neighboring vehicles. To enhance the study of vehicle trajectory prediction, this article proposes a novel Social Force-constrained Gated Recurrent Unit (SF-GRU) model, which integrates data-driven and physics-driven models. Specifically, the SF-GRU model is based on the gated recurrent unit encoder–decoder framework and incorporates social force constraints to enhance and supplement the model input based on vehicle time-series trajectory data, which describes the driving and interactive behaviors of vehicles during driving, as well as the interactions between neighboring vehicles and the surrounding environment. The model is trained and validated using the next generation simulation data set. Experimental results demonstrate that the SF-GRU model outperforms existing state-of-the-art models in both longitudinal and lateral motion, and that social force constraints are more effective than spatial variables in improving prediction accuracy. Furthermore, the SF-GRU model can intuitively and accurately consider the interactions between vehicles, and precisely describe the changes of relevant variables in the prediction process, thus enhancing the interpretability of the data-driven model. The SF-GRU model has great potential in vehicle trajectory prediction and can provide important support for the practical implementation of autonomous driving vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
12秒前
MY发布了新的文献求助10
16秒前
27秒前
欣喜忻完成签到,获得积分10
59秒前
爱静静应助qmln4采纳,获得10
1分钟前
1分钟前
科目三应助失眠的以蓝采纳,获得10
1分钟前
2分钟前
失眠的以蓝完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
聪明钢铁侠完成签到 ,获得积分10
2分钟前
在水一方应助MY采纳,获得10
2分钟前
2分钟前
MY发布了新的文献求助10
2分钟前
动听的不乐完成签到,获得积分10
2分钟前
情怀应助Xinxiu采纳,获得10
3分钟前
3分钟前
3分钟前
啊张应助动听的不乐采纳,获得10
3分钟前
3分钟前
含糊的安柏完成签到,获得积分10
3分钟前
大方千山发布了新的文献求助10
3分钟前
大方千山完成签到,获得积分10
3分钟前
希望天下0贩的0应助why采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
xiaomeng完成签到 ,获得积分10
3分钟前
Lucas应助风中的博采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
zz完成签到,获得积分10
4分钟前
4分钟前
风中的博发布了新的文献求助10
4分钟前
4分钟前
分你一半完成签到 ,获得积分10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311065
求助须知:如何正确求助?哪些是违规求助? 2943900
关于积分的说明 8516683
捐赠科研通 2619240
什么是DOI,文献DOI怎么找? 1432161
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810