亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Physical Law Constrained Deep Learning Model for Vehicle Trajectory Prediction

弹道 可解释性 计算机科学 过程(计算) 深度学习 编码器 人工智能 数据建模 机器学习 天文 数据库 操作系统 物理
作者
Hanchu Li,Ziyi Liao,Yikang Rui,Linchao Li,Bin Ran
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (24): 22775-22790 被引量:7
标识
DOI:10.1109/jiot.2023.3305395
摘要

Vehicle trajectory prediction is crucial and indispensable for ensuring the safe and efficient operation of autonomous vehicles in complex traffic environments. The application of Internet of Things technology in the collaborative automated driving system (CADS) has established a robust data foundation for vehicle trajectory prediction. Accurate prediction requires not only a substantial amount of high-quality data but also a deep understanding of the vehicle's driving characteristics and interactions between neighboring vehicles. To enhance the study of vehicle trajectory prediction, this article proposes a novel Social Force-constrained Gated Recurrent Unit (SF-GRU) model, which integrates data-driven and physics-driven models. Specifically, the SF-GRU model is based on the gated recurrent unit encoder–decoder framework and incorporates social force constraints to enhance and supplement the model input based on vehicle time-series trajectory data, which describes the driving and interactive behaviors of vehicles during driving, as well as the interactions between neighboring vehicles and the surrounding environment. The model is trained and validated using the next generation simulation data set. Experimental results demonstrate that the SF-GRU model outperforms existing state-of-the-art models in both longitudinal and lateral motion, and that social force constraints are more effective than spatial variables in improving prediction accuracy. Furthermore, the SF-GRU model can intuitively and accurately consider the interactions between vehicles, and precisely describe the changes of relevant variables in the prediction process, thus enhancing the interpretability of the data-driven model. The SF-GRU model has great potential in vehicle trajectory prediction and can provide important support for the practical implementation of autonomous driving vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
西门浩宇发布了新的文献求助10
14秒前
科目三应助liudy采纳,获得10
18秒前
21秒前
嘚嘚完成签到,获得积分10
22秒前
25秒前
29秒前
30秒前
liudy发布了新的文献求助10
34秒前
1206425219密完成签到,获得积分10
34秒前
共享精神应助科研通管家采纳,获得10
44秒前
遇上就这样吧应助绿竹采纳,获得20
51秒前
55秒前
量子星尘发布了新的文献求助10
1分钟前
小马甲应助liudy采纳,获得10
1分钟前
1分钟前
结实熠彤完成签到,获得积分20
1分钟前
liudy发布了新的文献求助10
1分钟前
1分钟前
结实熠彤发布了新的文献求助10
1分钟前
酷波er应助结实熠彤采纳,获得10
1分钟前
CometF完成签到 ,获得积分10
1分钟前
共享精神应助liudy采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
liudy完成签到,获得积分10
2分钟前
liudy发布了新的文献求助10
2分钟前
2分钟前
今相离发布了新的文献求助10
2分钟前
Dr3完成签到 ,获得积分10
2分钟前
2分钟前
子爵木完成签到 ,获得积分10
2分钟前
TORCH完成签到 ,获得积分10
2分钟前
Dr3发布了新的文献求助30
2分钟前
加绒发布了新的文献求助30
2分钟前
Sarah完成签到 ,获得积分10
3分钟前
3分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
3分钟前
tumbler发布了新的文献求助10
3分钟前
加绒完成签到,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957035
求助须知:如何正确求助?哪些是违规求助? 3503056
关于积分的说明 11111186
捐赠科研通 3234072
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264