Design and reinforcement-learning optimization of re-entrant cellular metamaterials

超材料 带隙 材料科学 拓扑优化 吸收(声学) 计算机科学 强化学习 光电子学 纳米技术 有限元法 复合材料 工程类 结构工程 人工智能
作者
Sihao Han,Qiang Han,Nanfang Ma,Chunlei Li
出处
期刊:Thin-walled Structures [Elsevier]
卷期号:191: 111071-111071 被引量:7
标识
DOI:10.1016/j.tws.2023.111071
摘要

The demand for cellular metamaterials exhibiting multiple desired properties has become increasingly prominent due to the complexity of engineering applications. In this study, a novel dual-functional re-entrant cellular metamaterial is proposed for excellent bandgap characteristics and enhanced energy absorption capacities. A structural evolutionary route of the metamaterial unit cell is developed through the introduction of flexural ligaments and geometric circles, which leads to the achievements in both superior bandgap and enhanced energy absorption. Firstly, the wave propagation characteristics of cellular metamaterials in three evolved configurations are analyzed systematically. Bandgap properties and the generation mechanism are revealed by mode shape analysis. Then, the Q-learning algorithm in reinforcement learning is employed to optimize significant structural parameters of cellular metamaterials to acquire the maximum bandgaps. The certain stability and efficiency of the algorithm are discussed by the evolutionary optimization of metamaterial unit cells with different configurations. Additionally, the energy absorption capacities of metamaterials with optimal microstructure configurations are investigated numerically. Plateau stress and specific absorption energy are compared under various impact velocities, with improved performance observed in the novel cellular metamaterials. The findings of this study offer a promising avenue for advancing the development of dual-functional metamaterials with tailored properties for diverse applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
sumu完成签到,获得积分10
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
健忘的牛排完成签到,获得积分20
4秒前
Orange应助科研通管家采纳,获得10
5秒前
陶陶完成签到,获得积分20
5秒前
无花果应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
精灵夜雨应助科研通管家采纳,获得10
5秒前
七七发布了新的文献求助30
5秒前
5秒前
5秒前
6秒前
6秒前
视野胤发布了新的文献求助10
6秒前
7秒前
ff完成签到,获得积分10
7秒前
乐乐应助哭泣雅绿采纳,获得10
8秒前
等待葵阴完成签到,获得积分20
8秒前
8秒前
顺利煎蛋发布了新的文献求助10
9秒前
等待落雁发布了新的文献求助10
9秒前
爱听歌契发布了新的文献求助10
10秒前
10秒前
刘jinkai发布了新的文献求助10
10秒前
Ava应助健忘的牛排采纳,获得10
10秒前
10秒前
等待葵阴发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133114
求助须知:如何正确求助?哪些是违规求助? 2784327
关于积分的说明 7765830
捐赠科研通 2439465
什么是DOI,文献DOI怎么找? 1296858
科研通“疑难数据库(出版商)”最低求助积分说明 624757
版权声明 600771