Design and reinforcement-learning optimization of re-entrant cellular metamaterials

超材料 带隙 材料科学 拓扑优化 吸收(声学) 计算机科学 强化学习 光电子学 纳米技术 有限元法 复合材料 工程类 结构工程 人工智能
作者
Sihao Han,Qiang Han,Nanfang Ma,Chunlei Li
出处
期刊:Thin-walled Structures [Elsevier BV]
卷期号:191: 111071-111071 被引量:7
标识
DOI:10.1016/j.tws.2023.111071
摘要

The demand for cellular metamaterials exhibiting multiple desired properties has become increasingly prominent due to the complexity of engineering applications. In this study, a novel dual-functional re-entrant cellular metamaterial is proposed for excellent bandgap characteristics and enhanced energy absorption capacities. A structural evolutionary route of the metamaterial unit cell is developed through the introduction of flexural ligaments and geometric circles, which leads to the achievements in both superior bandgap and enhanced energy absorption. Firstly, the wave propagation characteristics of cellular metamaterials in three evolved configurations are analyzed systematically. Bandgap properties and the generation mechanism are revealed by mode shape analysis. Then, the Q-learning algorithm in reinforcement learning is employed to optimize significant structural parameters of cellular metamaterials to acquire the maximum bandgaps. The certain stability and efficiency of the algorithm are discussed by the evolutionary optimization of metamaterial unit cells with different configurations. Additionally, the energy absorption capacities of metamaterials with optimal microstructure configurations are investigated numerically. Plateau stress and specific absorption energy are compared under various impact velocities, with improved performance observed in the novel cellular metamaterials. The findings of this study offer a promising avenue for advancing the development of dual-functional metamaterials with tailored properties for diverse applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzhang完成签到,获得积分10
刚刚
1秒前
1秒前
HelloKun完成签到,获得积分10
2秒前
2秒前
蜡笔发布了新的文献求助10
3秒前
WL发布了新的文献求助10
4秒前
4秒前
5秒前
情怀应助沧笙踏歌采纳,获得30
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
谭玲慧发布了新的文献求助10
6秒前
田様应助豆沙包采纳,获得10
6秒前
Hu完成签到,获得积分10
7秒前
wwe完成签到,获得积分10
7秒前
星辰大海应助罗永昊采纳,获得10
7秒前
杨仔完成签到,获得积分10
7秒前
7秒前
7秒前
5433发布了新的文献求助10
8秒前
研友_VZG7GZ应助552497采纳,获得10
8秒前
无心发布了新的文献求助10
9秒前
ED应助Betty采纳,获得10
10秒前
走着完成签到,获得积分10
10秒前
Meron发布了新的文献求助10
10秒前
隐形曼青应助凯睿采纳,获得10
11秒前
12秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
bkagyin应助科研通管家采纳,获得10
13秒前
daoyi应助科研通管家采纳,获得10
13秒前
乐观的香菱完成签到,获得积分10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961206
求助须知:如何正确求助?哪些是违规求助? 3507486
关于积分的说明 11136374
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790557
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186