Performance of ChatGPT and GPT-4 on Neurosurgery Written Board Examinations

医学 神经外科 梅德林 医学物理学 放射科 政治学 法学
作者
Rohaid Ali,Oliver Y. Tang,Ian D. Connolly,Patricia L. Zadnik Sullivan,John H. Shin,Jared S. Fridley,Wael F. Asaad,Deus Cielo,Adetokunbo A. Oyelese,Curtis E. Doberstein,Ziya L. Gokaslan,Albert E. Telfeian
出处
期刊:Neurosurgery [Oxford University Press]
被引量:143
标识
DOI:10.1227/neu.0000000000002632
摘要

Interest surrounding generative large language models (LLMs) has rapidly grown. Although ChatGPT (GPT-3.5), a general LLM, has shown near-passing performance on medical student board examinations, the performance of ChatGPT or its successor GPT-4 on specialized examinations and the factors affecting accuracy remain unclear. This study aims to assess the performance of ChatGPT and GPT-4 on a 500-question mock neurosurgical written board examination. The Self-Assessment Neurosurgery Examinations (SANS) American Board of Neurological Surgery Self-Assessment Examination 1 was used to evaluate ChatGPT and GPT-4. Questions were in single best answer, multiple-choice format. χ 2 , Fisher exact, and univariable logistic regression tests were used to assess performance differences in relation to question characteristics. ChatGPT (GPT-3.5) and GPT-4 achieved scores of 73.4% (95% CI: 69.3%-77.2%) and 83.4% (95% CI: 79.8%-86.5%), respectively, relative to the user average of 72.8% (95% CI: 68.6%-76.6%). Both LLMs exceeded last year's passing threshold of 69%. Although scores between ChatGPT and question bank users were equivalent ( P = .963), GPT-4 outperformed both (both P < .001). GPT-4 answered every question answered correctly by ChatGPT and 37.6% (50/133) of remaining incorrect questions correctly. Among 12 question categories, GPT-4 significantly outperformed users in each but performed comparably with ChatGPT in 3 (functional, other general, and spine) and outperformed both users and ChatGPT for tumor questions. Increased word count (odds ratio = 0.89 of answering a question correctly per +10 words) and higher-order problem-solving (odds ratio = 0.40, P = .009) were associated with lower accuracy for ChatGPT, but not for GPT-4 (both P > .005). Multimodal input was not available at the time of this study; hence, on questions with image content, ChatGPT and GPT-4 answered 49.5% and 56.8% of questions correctly based on contextual context clues alone. LLMs achieved passing scores on a mock 500-question neurosurgical written board examination, with GPT-4 significantly outperforming ChatGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumumu2关注了科研通微信公众号
1秒前
量子星尘发布了新的文献求助10
1秒前
cookie完成签到,获得积分10
2秒前
风清扬发布了新的文献求助10
2秒前
4秒前
科研通AI6应助May采纳,获得10
4秒前
wan完成签到,获得积分10
4秒前
6秒前
Z丶发布了新的文献求助10
6秒前
zzzzc发布了新的文献求助10
6秒前
乐乐应助上树抓鱼采纳,获得10
7秒前
科目三应助叶帆采纳,获得10
7秒前
顺利松鼠发布了新的文献求助10
8秒前
MySun完成签到,获得积分10
9秒前
9秒前
sky11完成签到 ,获得积分10
9秒前
10秒前
xinyue完成签到,获得积分10
10秒前
大模型应助钟D摆采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
李健的粉丝团团长应助kkk采纳,获得10
15秒前
李健的小迷弟应助哈哈采纳,获得10
15秒前
英俊的铭应助簌落采纳,获得10
15秒前
15秒前
16秒前
骤雨时晴完成签到 ,获得积分10
17秒前
17秒前
wanci应助明理的冷荷采纳,获得10
18秒前
打打应助Zzzzz采纳,获得10
18秒前
研友_VZG7GZ应助Zzzzz采纳,获得10
18秒前
斯文败类应助Zzzzz采纳,获得10
18秒前
田様应助Zzzzz采纳,获得10
18秒前
顾矜应助Zzzzz采纳,获得10
18秒前
科研通AI6应助Zzzzz采纳,获得10
18秒前
18秒前
Hello应助Zzzzz采纳,获得10
18秒前
CodeCraft应助Zzzzz采纳,获得10
18秒前
LFFF999发布了新的文献求助10
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453741
求助须知:如何正确求助?哪些是违规求助? 4561252
关于积分的说明 14281645
捐赠科研通 4485241
什么是DOI,文献DOI怎么找? 2456565
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687