Performance of ChatGPT and GPT-4 on Neurosurgery Written Board Examinations

医学 神经外科 梅德林 医学物理学 放射科 政治学 法学
作者
Rohaid Ali,Oliver Y. Tang,Ian D. Connolly,Patricia L. Zadnik Sullivan,John H. Shin,Jared S. Fridley,Wael F. Asaad,Deus Cielo,Adetokunbo A. Oyelese,Curtis E. Doberstein,Ziya L. Gokaslan,Albert E. Telfeian
出处
期刊:Neurosurgery [Oxford University Press]
被引量:143
标识
DOI:10.1227/neu.0000000000002632
摘要

Interest surrounding generative large language models (LLMs) has rapidly grown. Although ChatGPT (GPT-3.5), a general LLM, has shown near-passing performance on medical student board examinations, the performance of ChatGPT or its successor GPT-4 on specialized examinations and the factors affecting accuracy remain unclear. This study aims to assess the performance of ChatGPT and GPT-4 on a 500-question mock neurosurgical written board examination. The Self-Assessment Neurosurgery Examinations (SANS) American Board of Neurological Surgery Self-Assessment Examination 1 was used to evaluate ChatGPT and GPT-4. Questions were in single best answer, multiple-choice format. χ 2 , Fisher exact, and univariable logistic regression tests were used to assess performance differences in relation to question characteristics. ChatGPT (GPT-3.5) and GPT-4 achieved scores of 73.4% (95% CI: 69.3%-77.2%) and 83.4% (95% CI: 79.8%-86.5%), respectively, relative to the user average of 72.8% (95% CI: 68.6%-76.6%). Both LLMs exceeded last year's passing threshold of 69%. Although scores between ChatGPT and question bank users were equivalent ( P = .963), GPT-4 outperformed both (both P < .001). GPT-4 answered every question answered correctly by ChatGPT and 37.6% (50/133) of remaining incorrect questions correctly. Among 12 question categories, GPT-4 significantly outperformed users in each but performed comparably with ChatGPT in 3 (functional, other general, and spine) and outperformed both users and ChatGPT for tumor questions. Increased word count (odds ratio = 0.89 of answering a question correctly per +10 words) and higher-order problem-solving (odds ratio = 0.40, P = .009) were associated with lower accuracy for ChatGPT, but not for GPT-4 (both P > .005). Multimodal input was not available at the time of this study; hence, on questions with image content, ChatGPT and GPT-4 answered 49.5% and 56.8% of questions correctly based on contextual context clues alone. LLMs achieved passing scores on a mock 500-question neurosurgical written board examination, with GPT-4 significantly outperforming ChatGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助自觉的涵易采纳,获得10
刚刚
彭于彦祖应助ppp采纳,获得100
刚刚
斯文败类应助李JJ采纳,获得10
1秒前
无语的南风完成签到,获得积分10
1秒前
pharmren完成签到,获得积分10
1秒前
爱吃脑袋瓜完成签到,获得积分10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
可可完成签到,获得积分10
2秒前
友好白凡发布了新的文献求助10
3秒前
3秒前
123发布了新的文献求助10
3秒前
BKEL发布了新的文献求助10
4秒前
4秒前
迷人雪一完成签到,获得积分10
4秒前
4秒前
4秒前
LL发布了新的文献求助30
4秒前
天水张家辉完成签到,获得积分10
4秒前
舍得完成签到,获得积分10
4秒前
4秒前
科研完成签到,获得积分10
5秒前
xiaoguang发布了新的文献求助20
5秒前
自然代亦发布了新的文献求助10
5秒前
5秒前
CodeCraft应助nannan采纳,获得10
6秒前
pursu发布了新的文献求助10
6秒前
覆辙完成签到,获得积分10
6秒前
寻心完成签到,获得积分10
6秒前
瘦瘦完成签到 ,获得积分10
6秒前
6秒前
Brightan完成签到,获得积分10
7秒前
科研通AI2S应助愉快的莹采纳,获得10
7秒前
含糊的丹发布了新的文献求助10
7秒前
7秒前
无极微光应助pharmren采纳,获得20
7秒前
7秒前
znn发布了新的文献求助10
8秒前
tyrtysr完成签到,获得积分10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699471
求助须知:如何正确求助?哪些是违规求助? 5130982
关于积分的说明 15225905
捐赠科研通 4854490
什么是DOI,文献DOI怎么找? 2604706
邀请新用户注册赠送积分活动 1556088
关于科研通互助平台的介绍 1514353