Performance of ChatGPT and GPT-4 on Neurosurgery Written Board Examinations

医学 神经外科 梅德林 医学物理学 放射科 政治学 法学
作者
Rohaid Ali,Oliver Y. Tang,Ian D. Connolly,Patricia L. Zadnik Sullivan,John H. Shin,Jared S. Fridley,Wael F. Asaad,Deus Cielo,Adetokunbo A. Oyelese,Curtis E. Doberstein,Ziya L. Gokaslan,Albert E. Telfeian
出处
期刊:Neurosurgery [Oxford University Press]
被引量:143
标识
DOI:10.1227/neu.0000000000002632
摘要

Interest surrounding generative large language models (LLMs) has rapidly grown. Although ChatGPT (GPT-3.5), a general LLM, has shown near-passing performance on medical student board examinations, the performance of ChatGPT or its successor GPT-4 on specialized examinations and the factors affecting accuracy remain unclear. This study aims to assess the performance of ChatGPT and GPT-4 on a 500-question mock neurosurgical written board examination. The Self-Assessment Neurosurgery Examinations (SANS) American Board of Neurological Surgery Self-Assessment Examination 1 was used to evaluate ChatGPT and GPT-4. Questions were in single best answer, multiple-choice format. χ 2 , Fisher exact, and univariable logistic regression tests were used to assess performance differences in relation to question characteristics. ChatGPT (GPT-3.5) and GPT-4 achieved scores of 73.4% (95% CI: 69.3%-77.2%) and 83.4% (95% CI: 79.8%-86.5%), respectively, relative to the user average of 72.8% (95% CI: 68.6%-76.6%). Both LLMs exceeded last year's passing threshold of 69%. Although scores between ChatGPT and question bank users were equivalent ( P = .963), GPT-4 outperformed both (both P < .001). GPT-4 answered every question answered correctly by ChatGPT and 37.6% (50/133) of remaining incorrect questions correctly. Among 12 question categories, GPT-4 significantly outperformed users in each but performed comparably with ChatGPT in 3 (functional, other general, and spine) and outperformed both users and ChatGPT for tumor questions. Increased word count (odds ratio = 0.89 of answering a question correctly per +10 words) and higher-order problem-solving (odds ratio = 0.40, P = .009) were associated with lower accuracy for ChatGPT, but not for GPT-4 (both P > .005). Multimodal input was not available at the time of this study; hence, on questions with image content, ChatGPT and GPT-4 answered 49.5% and 56.8% of questions correctly based on contextual context clues alone. LLMs achieved passing scores on a mock 500-question neurosurgical written board examination, with GPT-4 significantly outperforming ChatGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
7秒前
11秒前
wlscj应助莫莫采纳,获得20
11秒前
12秒前
14秒前
学渣完成签到,获得积分10
15秒前
简简完成签到,获得积分10
16秒前
於成协完成签到,获得积分10
18秒前
科目三应助旒十二采纳,获得10
18秒前
xin发布了新的文献求助10
18秒前
辛勤芷容完成签到,获得积分10
20秒前
三心发布了新的文献求助30
21秒前
简简发布了新的文献求助10
22秒前
Jovial发布了新的文献求助10
23秒前
24秒前
沐兮发布了新的文献求助10
24秒前
fkdbdy发布了新的文献求助10
27秒前
30秒前
思蜀完成签到,获得积分10
31秒前
31秒前
赘婿应助FLO采纳,获得10
32秒前
renren完成签到 ,获得积分10
32秒前
郝先生发布了新的文献求助10
33秒前
whitexue发布了新的文献求助10
34秒前
等候发布了新的文献求助10
34秒前
moon发布了新的文献求助10
35秒前
共享精神应助羽化成环采纳,获得10
35秒前
直率的鸿完成签到,获得积分10
35秒前
科研通AI6应助徐国状采纳,获得10
35秒前
37秒前
37秒前
年轻的冥幽完成签到,获得积分10
37秒前
38秒前
42秒前
ho应助靓丽的似狮采纳,获得10
42秒前
43秒前
周浩宇发布了新的文献求助10
44秒前
羞涩的文轩完成签到 ,获得积分10
45秒前
海鑫的文献工具完成签到,获得积分10
45秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383486
求助须知:如何正确求助?哪些是违规求助? 4506445
关于积分的说明 14024673
捐赠科研通 4416201
什么是DOI,文献DOI怎么找? 2425926
邀请新用户注册赠送积分活动 1418602
关于科研通互助平台的介绍 1396917