Performance of ChatGPT and GPT-4 on Neurosurgery Written Board Examinations

医学 神经外科 梅德林 医学物理学 放射科 政治学 法学
作者
Rohaid Ali,Oliver Y. Tang,Ian D. Connolly,Patricia L. Zadnik Sullivan,John H. Shin,Jared S. Fridley,Wael F. Asaad,Deus Cielo,Adetokunbo A. Oyelese,Curtis E. Doberstein,Ziya L. Gokaslan,Albert E. Telfeian
出处
期刊:Neurosurgery [Lippincott Williams & Wilkins]
被引量:143
标识
DOI:10.1227/neu.0000000000002632
摘要

Interest surrounding generative large language models (LLMs) has rapidly grown. Although ChatGPT (GPT-3.5), a general LLM, has shown near-passing performance on medical student board examinations, the performance of ChatGPT or its successor GPT-4 on specialized examinations and the factors affecting accuracy remain unclear. This study aims to assess the performance of ChatGPT and GPT-4 on a 500-question mock neurosurgical written board examination. The Self-Assessment Neurosurgery Examinations (SANS) American Board of Neurological Surgery Self-Assessment Examination 1 was used to evaluate ChatGPT and GPT-4. Questions were in single best answer, multiple-choice format. χ 2 , Fisher exact, and univariable logistic regression tests were used to assess performance differences in relation to question characteristics. ChatGPT (GPT-3.5) and GPT-4 achieved scores of 73.4% (95% CI: 69.3%-77.2%) and 83.4% (95% CI: 79.8%-86.5%), respectively, relative to the user average of 72.8% (95% CI: 68.6%-76.6%). Both LLMs exceeded last year's passing threshold of 69%. Although scores between ChatGPT and question bank users were equivalent ( P = .963), GPT-4 outperformed both (both P < .001). GPT-4 answered every question answered correctly by ChatGPT and 37.6% (50/133) of remaining incorrect questions correctly. Among 12 question categories, GPT-4 significantly outperformed users in each but performed comparably with ChatGPT in 3 (functional, other general, and spine) and outperformed both users and ChatGPT for tumor questions. Increased word count (odds ratio = 0.89 of answering a question correctly per +10 words) and higher-order problem-solving (odds ratio = 0.40, P = .009) were associated with lower accuracy for ChatGPT, but not for GPT-4 (both P > .005). Multimodal input was not available at the time of this study; hence, on questions with image content, ChatGPT and GPT-4 answered 49.5% and 56.8% of questions correctly based on contextual context clues alone. LLMs achieved passing scores on a mock 500-question neurosurgical written board examination, with GPT-4 significantly outperforming ChatGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨丽发布了新的文献求助10
刚刚
1秒前
泰山球迷发布了新的文献求助10
1秒前
2秒前
小w爱吃锅包肉应助口香糖采纳,获得10
2秒前
3秒前
3秒前
赖同学发布了新的文献求助20
4秒前
4秒前
Z_Miaom完成签到,获得积分10
5秒前
知北完成签到,获得积分10
6秒前
6秒前
Sir.夏季风发布了新的文献求助10
7秒前
佳雯发布了新的文献求助10
7秒前
千里完成签到,获得积分10
7秒前
7秒前
JKA23完成签到,获得积分10
8秒前
2026毕业啦发布了新的文献求助10
8秒前
9秒前
9秒前
郗妫完成签到,获得积分10
9秒前
星辰大海应助Z_Miaom采纳,获得10
10秒前
10秒前
端庄诗翠发布了新的文献求助30
12秒前
12秒前
科研通AI5应助周周采纳,获得20
13秒前
13秒前
斯文败类应助ximei采纳,获得10
14秒前
15秒前
科目三应助贪玩蔡徐坤采纳,获得10
15秒前
15秒前
Lucas应助刘永红采纳,获得10
16秒前
16秒前
炼丹师应助Gyaz采纳,获得20
16秒前
16秒前
16秒前
机智绝悟完成签到,获得积分10
17秒前
无限的丹翠完成签到,获得积分10
18秒前
寒冷的奇异果完成签到,获得积分10
18秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590