Performance of ChatGPT and GPT-4 on Neurosurgery Written Board Examinations

医学 神经外科 梅德林 医学物理学 放射科 政治学 法学
作者
Rohaid Ali,Oliver Y. Tang,Ian D. Connolly,Patricia L. Zadnik Sullivan,John H. Shin,Jared S. Fridley,Wael F. Asaad,Deus Cielo,Adetokunbo A. Oyelese,Curtis E. Doberstein,Ziya L. Gokaslan,Albert E. Telfeian
出处
期刊:Neurosurgery [Oxford University Press]
被引量:143
标识
DOI:10.1227/neu.0000000000002632
摘要

Interest surrounding generative large language models (LLMs) has rapidly grown. Although ChatGPT (GPT-3.5), a general LLM, has shown near-passing performance on medical student board examinations, the performance of ChatGPT or its successor GPT-4 on specialized examinations and the factors affecting accuracy remain unclear. This study aims to assess the performance of ChatGPT and GPT-4 on a 500-question mock neurosurgical written board examination. The Self-Assessment Neurosurgery Examinations (SANS) American Board of Neurological Surgery Self-Assessment Examination 1 was used to evaluate ChatGPT and GPT-4. Questions were in single best answer, multiple-choice format. χ 2 , Fisher exact, and univariable logistic regression tests were used to assess performance differences in relation to question characteristics. ChatGPT (GPT-3.5) and GPT-4 achieved scores of 73.4% (95% CI: 69.3%-77.2%) and 83.4% (95% CI: 79.8%-86.5%), respectively, relative to the user average of 72.8% (95% CI: 68.6%-76.6%). Both LLMs exceeded last year's passing threshold of 69%. Although scores between ChatGPT and question bank users were equivalent ( P = .963), GPT-4 outperformed both (both P < .001). GPT-4 answered every question answered correctly by ChatGPT and 37.6% (50/133) of remaining incorrect questions correctly. Among 12 question categories, GPT-4 significantly outperformed users in each but performed comparably with ChatGPT in 3 (functional, other general, and spine) and outperformed both users and ChatGPT for tumor questions. Increased word count (odds ratio = 0.89 of answering a question correctly per +10 words) and higher-order problem-solving (odds ratio = 0.40, P = .009) were associated with lower accuracy for ChatGPT, but not for GPT-4 (both P > .005). Multimodal input was not available at the time of this study; hence, on questions with image content, ChatGPT and GPT-4 answered 49.5% and 56.8% of questions correctly based on contextual context clues alone. LLMs achieved passing scores on a mock 500-question neurosurgical written board examination, with GPT-4 significantly outperforming ChatGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
慕青应助风信子deon01采纳,获得10
6秒前
搞怪曼波发布了新的文献求助10
9秒前
十二完成签到 ,获得积分10
9秒前
不想长大完成签到 ,获得积分0
10秒前
10秒前
激动的xx完成签到 ,获得积分10
12秒前
正直的夏真完成签到 ,获得积分10
13秒前
DittO完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
七七完成签到 ,获得积分10
19秒前
咕咚完成签到 ,获得积分10
20秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
荣幸完成签到 ,获得积分10
24秒前
abab小王发布了新的文献求助10
25秒前
铁风筝芳芳完成签到,获得积分10
26秒前
西山菩提完成签到,获得积分10
27秒前
陈秋完成签到,获得积分10
28秒前
娟娟完成签到 ,获得积分10
31秒前
光能使者完成签到 ,获得积分10
32秒前
记忆力超人完成签到,获得积分10
32秒前
rigelfalcon完成签到,获得积分10
34秒前
35秒前
整齐豆芽完成签到 ,获得积分10
35秒前
Dai完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
43秒前
44秒前
万能图书馆应助abab小王采纳,获得10
44秒前
lamer完成签到,获得积分10
44秒前
jie完成签到 ,获得积分10
45秒前
壮观的谷冬完成签到 ,获得积分0
48秒前
甜心椰奶莓莓完成签到 ,获得积分10
51秒前
马冬梅完成签到 ,获得积分10
53秒前
ding应助lamer采纳,获得10
56秒前
无极微光应助lamer采纳,获得20
56秒前
量子星尘发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671534
求助须知:如何正确求助?哪些是违规求助? 4919164
关于积分的说明 15134912
捐赠科研通 4830267
什么是DOI,文献DOI怎么找? 2587024
邀请新用户注册赠送积分活动 1540626
关于科研通互助平台的介绍 1498913