亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dissecting tumor transcriptional heterogeneity from single-cell RNA-seq data by generalized binary covariance decomposition

计算生物学 生物 肿瘤异质性 基因 RNA序列 基因表达谱 癌症 转录组 基因表达 遗传学
作者
Yusha Liu,Peter Carbonetto,Jason Willwerscheid,Scott A. Oakes,Kay F. Macleod,Matthew Stephens
标识
DOI:10.1101/2023.08.15.553436
摘要

Profiling tumors with single-cell RNA sequencing (scRNA-seq) has the potential to identify recurrent patterns of transcription variation related to cancer progression, and produce new therapeutically relevant insights. However, the presence of strong inter-tumor heterogeneity often obscures more subtle patterns that are shared across tumors, some of which may characterize clinically relevant disease subtypes. Here we introduce a new statistical method, generalized binary covariance decomposition (GBCD), to address this problem. We show that GBCD can help decompose transcriptional heterogeneity into interpretable components — including patient-specific, dataset-specific and shared components relevant to disease subtypes — and that, in the presence of strong inter-tumor heterogeneity, it can produce more interpretable results than existing methods. Applied to data from three studies on pancreatic cancer adenocarcinoma (PDAC), GBCD produces a refined characterization of existing tumor subtypes (e.g., classical vs. basal), and identifies a new gene expression program (GEP) that is prognostic of poor survival independent of established prognostic factors such as tumor stage and subtype. The new GEP is enriched for genes involved in a variety of stress responses, and suggests a potentially important role for the integrated stress response in PDAC development and prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
16秒前
西瓜霜发布了新的文献求助10
20秒前
31秒前
彭于晏应助读书的时候采纳,获得80
43秒前
落沧完成签到 ,获得积分10
43秒前
充电宝应助西瓜霜采纳,获得10
46秒前
49秒前
49秒前
Jasper应助科研通管家采纳,获得10
50秒前
大模型应助科研通管家采纳,获得30
50秒前
科研通AI6应助科研通管家采纳,获得10
50秒前
传奇3应助读书的时候采纳,获得10
1分钟前
JodieZhu完成签到,获得积分10
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
1分钟前
wz完成签到,获得积分10
1分钟前
JamesPei应助manjusaka采纳,获得10
2分钟前
bkagyin应助读书的时候采纳,获得10
2分钟前
2分钟前
manjusaka发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
嘻嘻哈哈发布了新的文献求助10
3分钟前
3分钟前
3分钟前
大模型应助读书的时候采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
刻苦的艳发布了新的文献求助10
5分钟前
酷波er应助刻苦的艳采纳,获得30
5分钟前
5分钟前
5分钟前
果酱完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732400
求助须知:如何正确求助?哪些是违规求助? 5338949
关于积分的说明 15322212
捐赠科研通 4877990
什么是DOI,文献DOI怎么找? 2620796
邀请新用户注册赠送积分活动 1570000
关于科研通互助平台的介绍 1526672