NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:496: 112603-112603 被引量:13
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助xtqgyy采纳,获得10
1秒前
无花果应助兴奋的觅露采纳,获得10
1秒前
jjyna完成签到,获得积分10
1秒前
Ava应助得到采纳,获得10
2秒前
FashionBoy应助刻苦的鸭子采纳,获得10
3秒前
3秒前
6秒前
草莓杏仁饼完成签到 ,获得积分10
7秒前
7秒前
印象发布了新的文献求助10
8秒前
小蘑菇应助Miracle采纳,获得10
9秒前
10秒前
10秒前
英勇沧海给英勇沧海的求助进行了留言
11秒前
张张完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
彼得大帝完成签到,获得积分10
16秒前
顺利毕业发布了新的文献求助10
16秒前
奈何发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
18秒前
翁可兰完成签到 ,获得积分10
18秒前
19秒前
20秒前
科目三应助聪仔采纳,获得10
20秒前
21秒前
wisdom应助小袁采纳,获得10
21秒前
儒雅的访云完成签到,获得积分10
22秒前
22秒前
称心千凝发布了新的文献求助10
22秒前
22秒前
gao456789完成签到,获得积分10
23秒前
1111关注了科研通微信公众号
23秒前
ding应助顺利毕业采纳,获得10
23秒前
张张发布了新的文献求助10
23秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206565
求助须知:如何正确求助?哪些是违规求助? 2856045
关于积分的说明 8102101
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354139
科研通“疑难数据库(出版商)”最低求助积分说明 641924
邀请新用户注册赠送积分活动 613167