已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:496: 112603-112603 被引量:27
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的小刺猬应助施少雄采纳,获得10
刚刚
1秒前
妮妮完成签到,获得积分20
3秒前
总是很简单完成签到 ,获得积分10
4秒前
科研通AI6应助hermitLee采纳,获得10
4秒前
ontheway发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
10秒前
10秒前
Bailey发布了新的文献求助10
10秒前
Xzj发布了新的文献求助10
11秒前
11秒前
An完成签到,获得积分20
13秒前
yyh发布了新的文献求助10
16秒前
阿星完成签到,获得积分10
16秒前
温暖书文发布了新的文献求助10
16秒前
明昼完成签到,获得积分10
17秒前
三维码完成签到,获得积分10
18秒前
88C真是太神奇啦完成签到 ,获得积分10
21秒前
21秒前
善良的花菜完成签到 ,获得积分10
22秒前
22秒前
huishoushen完成签到 ,获得积分10
23秒前
科研通AI2S应助FLY采纳,获得10
25秒前
26秒前
852应助微光熠采纳,获得10
26秒前
温暖书文完成签到,获得积分10
27秒前
SciGPT应助111采纳,获得10
27秒前
YY发布了新的文献求助30
27秒前
YEM发布了新的文献求助10
27秒前
zhangwenjie完成签到 ,获得积分10
28秒前
慕青应助坚强素采纳,获得30
28秒前
科研通AI2S应助科研通管家采纳,获得30
29秒前
29秒前
ceeray23应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
李爱国应助科研通管家采纳,获得10
29秒前
ceeray23应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650260
求助须知:如何正确求助?哪些是违规求助? 4780326
关于积分的说明 15051616
捐赠科研通 4809184
什么是DOI,文献DOI怎么找? 2572075
邀请新用户注册赠送积分活动 1528266
关于科研通互助平台的介绍 1487102