亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:496: 112603-112603 被引量:27
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
16秒前
24秒前
BowieHuang应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
43秒前
HYQ完成签到 ,获得积分10
51秒前
星晴发布了新的文献求助10
1分钟前
1分钟前
miracle关注了科研通微信公众号
1分钟前
miracle发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Y8发布了新的文献求助10
1分钟前
1分钟前
orixero应助星晴采纳,获得10
1分钟前
Y8完成签到,获得积分10
1分钟前
2分钟前
2分钟前
矮小的猕猴桃完成签到,获得积分10
2分钟前
GingerF应助abcd采纳,获得60
2分钟前
GingerF应助abcd采纳,获得70
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
GingerF应助abcd采纳,获得80
3分钟前
3分钟前
tian发布了新的文献求助10
3分钟前
研友_VZG7GZ应助tian采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
hqh发布了新的文献求助10
4分钟前
上官若男应助hqh采纳,获得10
4分钟前
yb完成签到,获得积分10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622308
关于积分的说明 14582538
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500225
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938