NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:496: 112603-112603 被引量:27
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Smes完成签到,获得积分10
刚刚
ellen完成签到,获得积分10
1秒前
Only完成签到 ,获得积分10
1秒前
斯文败类应助谨慎的芹菜采纳,获得10
2秒前
施施完成签到,获得积分10
4秒前
852应助w尘采纳,获得20
4秒前
兔子里的乌龟完成签到,获得积分10
5秒前
GERRARD完成签到,获得积分10
5秒前
子非愚完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助GG采纳,获得10
5秒前
75986686发布了新的文献求助10
6秒前
YCG完成签到 ,获得积分10
6秒前
橘皮灯灯完成签到,获得积分10
7秒前
XS_QI完成签到 ,获得积分10
7秒前
莫莫完成签到 ,获得积分10
8秒前
大米饭顺利毕业完成签到 ,获得积分10
8秒前
无极微光应助科研通管家采纳,获得20
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Frank应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
wuliqun应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
香蕉海白完成签到 ,获得积分10
10秒前
liuye0202完成签到,获得积分10
11秒前
ADGAI完成签到,获得积分10
11秒前
彭于晏应助清爽的耳机采纳,获得10
11秒前
XD完成签到,获得积分10
14秒前
流星雨完成签到 ,获得积分10
14秒前
酷炫抽屉完成签到 ,获得积分10
15秒前
淡定的美女完成签到,获得积分10
17秒前
18秒前
19秒前
haoliangshi发布了新的文献求助10
20秒前
生动白开水完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418727
求助须知:如何正确求助?哪些是违规求助? 4534376
关于积分的说明 14143603
捐赠科研通 4450594
什么是DOI,文献DOI怎么找? 2441331
邀请新用户注册赠送积分活动 1433030
关于科研通互助平台的介绍 1410456