NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:496: 112603-112603 被引量:27
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓉城发布了新的文献求助10
刚刚
小白鼠完成签到 ,获得积分10
1秒前
贪玩蓝月完成签到 ,获得积分10
2秒前
Ao_Jiang完成签到,获得积分10
2秒前
sean完成签到 ,获得积分10
11秒前
ncuwzq完成签到,获得积分10
11秒前
蓉城完成签到,获得积分10
13秒前
玩命做研究完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
恋恋青葡萄完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
Eber完成签到,获得积分10
19秒前
萌萌许完成签到,获得积分10
20秒前
20秒前
joe完成签到 ,获得积分10
20秒前
22秒前
宋佳发布了新的文献求助10
23秒前
英姑应助CJN采纳,获得10
24秒前
闫小闫完成签到 ,获得积分10
30秒前
美好灵寒完成签到 ,获得积分10
30秒前
33秒前
卷卷发布了新的文献求助10
38秒前
39秒前
40秒前
张sir完成签到,获得积分10
42秒前
44秒前
江三村完成签到 ,获得积分0
44秒前
欣喜易形完成签到,获得积分10
45秒前
爱吃香菜的哆啦A梦完成签到,获得积分10
45秒前
45秒前
CJN发布了新的文献求助10
45秒前
lulufighting完成签到,获得积分10
46秒前
凌晨五点的完成签到,获得积分10
47秒前
薄荷味的猫完成签到,获得积分10
48秒前
49秒前
受伤破茧发布了新的文献求助10
49秒前
健壮易巧完成签到,获得积分10
50秒前
量子星尘发布了新的文献求助10
50秒前
50秒前
Heisenberg发布了新的文献求助10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677086
求助须知:如何正确求助?哪些是违规求助? 4970454
关于积分的说明 15159354
捐赠科研通 4836760
什么是DOI,文献DOI怎么找? 2591317
邀请新用户注册赠送积分活动 1544792
关于科研通互助平台的介绍 1502815