NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:496: 112603-112603 被引量:27
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小Z发布了新的文献求助10
刚刚
修身养性发布了新的文献求助10
1秒前
Niko发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
曹沛岚完成签到,获得积分10
1秒前
上官若男应助执着从灵采纳,获得10
2秒前
可靠的雨筠完成签到,获得积分10
2秒前
2秒前
鲤黎黎发布了新的文献求助10
2秒前
abc完成签到,获得积分10
2秒前
落后乐荷完成签到,获得积分10
3秒前
Eureka完成签到,获得积分10
3秒前
liuzhong完成签到,获得积分10
4秒前
曾经的安珊完成签到,获得积分20
4秒前
yu完成签到,获得积分10
4秒前
4秒前
充电宝应助DJDJ采纳,获得10
4秒前
4秒前
沉默的婴发布了新的文献求助20
5秒前
香蕉冰真完成签到,获得积分10
5秒前
复杂鱼完成签到,获得积分20
5秒前
5秒前
Benjamin完成签到,获得积分20
5秒前
苏silence发布了新的文献求助10
5秒前
Tingting完成签到 ,获得积分10
5秒前
普鲁卡因发布了新的文献求助10
5秒前
WangQ完成签到,获得积分10
6秒前
6秒前
niuya完成签到,获得积分10
6秒前
7秒前
灵光一闪发布了新的文献求助30
7秒前
英俊的铭应助大大采纳,获得10
7秒前
666完成签到,获得积分10
7秒前
7秒前
XuanQi完成签到,获得积分10
7秒前
简默发布了新的文献求助10
8秒前
新八完成签到,获得积分10
8秒前
眼睛大凤完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017