NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:496: 112603-112603 被引量:27
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NoMigraine完成签到,获得积分10
刚刚
田様应助娜乌西卡采纳,获得30
刚刚
鸣笛应助duhdhd采纳,获得30
1秒前
LaTeXer应助guozizi采纳,获得30
1秒前
yydragen应助guozizi采纳,获得30
1秒前
J.发布了新的文献求助10
1秒前
楷叼小潘东完成签到,获得积分10
2秒前
我是老大应助墨酒采纳,获得10
3秒前
Rondab应助朕是大皇帝采纳,获得10
4秒前
lambda完成签到,获得积分10
4秒前
NexusExplorer应助明理寒烟采纳,获得10
4秒前
5秒前
CipherSage应助NoMigraine采纳,获得20
5秒前
6秒前
烂漫的紫槐完成签到,获得积分10
6秒前
6秒前
平常的毛豆应助lihe198900采纳,获得10
7秒前
7秒前
8秒前
易点点完成签到,获得积分10
8秒前
岸上牛完成签到,获得积分10
8秒前
Mollyshimmer完成签到 ,获得积分10
8秒前
科研通AI5应助六子采纳,获得10
10秒前
10秒前
情怀应助灰底爆米花采纳,获得10
10秒前
顺顺完成签到,获得积分10
10秒前
Jacey79完成签到 ,获得积分10
11秒前
好叭发布了新的文献求助10
12秒前
肉卷发布了新的文献求助10
13秒前
王子倩发布了新的文献求助10
13秒前
易点点发布了新的文献求助20
13秒前
迷路的煎蛋完成签到,获得积分10
15秒前
15秒前
星星完成签到 ,获得积分10
16秒前
16秒前
呆呆完成签到 ,获得积分10
17秒前
keduo完成签到 ,获得积分10
18秒前
好叭完成签到,获得积分20
19秒前
娜乌西卡发布了新的文献求助30
20秒前
nickel发布了新的文献求助20
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991967
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260597
捐赠科研通 3272377
什么是DOI,文献DOI怎么找? 1805789
邀请新用户注册赠送积分活动 882660
科研通“疑难数据库(出版商)”最低求助积分说明 809425