亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier]
卷期号:496: 112603-112603 被引量:27
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助Anxietymaker采纳,获得10
2秒前
怕黑鲂完成签到 ,获得积分10
3秒前
3秒前
不知终日梦为鱼完成签到,获得积分10
6秒前
123456发布了新的文献求助10
6秒前
6秒前
小蘑菇应助123采纳,获得30
9秒前
量子星尘发布了新的文献求助10
9秒前
moumou完成签到 ,获得积分10
10秒前
17秒前
汪海洋完成签到 ,获得积分10
18秒前
Crisp完成签到 ,获得积分10
19秒前
大个应助LSL丶采纳,获得10
20秒前
22秒前
哈哈哈哈哈哈完成签到,获得积分20
22秒前
orange完成签到 ,获得积分10
23秒前
欣欣发布了新的文献求助10
23秒前
思源应助123采纳,获得10
25秒前
Yvonne发布了新的文献求助10
27秒前
李健应助犹豫帆布鞋采纳,获得10
30秒前
31秒前
35秒前
Anxietymaker发布了新的文献求助10
35秒前
35秒前
Criminology34应助科研通管家采纳,获得10
36秒前
36秒前
39秒前
hu完成签到 ,获得积分10
40秒前
41秒前
希望天下0贩的0应助123采纳,获得30
44秒前
FU发布了新的文献求助10
45秒前
47秒前
cijing完成签到,获得积分10
50秒前
www完成签到,获得积分10
51秒前
犹豫帆布鞋完成签到,获得积分10
51秒前
58秒前
酷酷的大米完成签到,获得积分10
59秒前
科研通AI6应助123采纳,获得10
1分钟前
1分钟前
Scheduling完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657742
求助须知:如何正确求助?哪些是违规求助? 4811989
关于积分的说明 15080182
捐赠科研通 4815962
什么是DOI,文献DOI怎么找? 2576976
邀请新用户注册赠送积分活动 1532019
关于科研通互助平台的介绍 1490512