清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

NAS-PINN: Neural architecture search-guided physics-informed neural network for solving PDEs

人工神经网络 计算机科学 架空(工程) 随机神经网络 人工智能 时滞神经网络 操作系统
作者
Yifan Wang,Linlin Zhong
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:496: 112603-112603 被引量:27
标识
DOI:10.1016/j.jcp.2023.112603
摘要

Physics-informed neural network (PINN) has been a prevalent framework for solving PDEs since proposed. By incorporating the physical information into the neural network through loss functions, it can predict solutions to PDEs in an unsupervised manner. However, the design of the neural network structure basically relies on prior knowledge and experience, which has caused great trouble and high computational overhead. Therefore, we propose a neural architecture search-guided method, namely NAS-PINN, to automatically search the optimum neural architecture for solving certain PDEs. By relaxing the search space into a continuous one and utilizing masks to realize the addition of tensors in different shapes, NAS-PINN can be trained through a bi-level optimization, where the inner loop optimizes the weights and bias of neural networks and the outer loop the architecture parameters. We verify the ability of NAS-PINN by several numerical experiments including Poisson, Burgers, and Advection equations. The characteristics of effective neural architectures for solving different PDEs are summarized, which can be used to guide the design of neural networks in PINN. It is found that more hidden layers do not necessarily mean better performance and sometimes can be harmful. Especially for Poisson and Advection, a shallow neural network with more neurons is more appropriate in PINNs. It is also indicated that for complex problems, neural networks with residual connection can improve the performance of PINNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alisha完成签到,获得积分10
5秒前
jeronimo完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
8秒前
14秒前
zzz发布了新的文献求助10
20秒前
huiluowork完成签到 ,获得积分10
36秒前
jh完成签到 ,获得积分10
44秒前
归尘应助科研通管家采纳,获得10
47秒前
Eric800824完成签到 ,获得积分10
49秒前
zzz完成签到,获得积分20
1分钟前
嘻嘻哈哈完成签到 ,获得积分10
1分钟前
小文殊完成签到 ,获得积分10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
虚幻小丸子完成签到 ,获得积分10
1分钟前
2分钟前
rover完成签到,获得积分10
2分钟前
JHY发布了新的文献求助10
2分钟前
吴学仕完成签到,获得积分10
2分钟前
Thunnus001完成签到 ,获得积分10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得30
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
郑琦敏钰完成签到 ,获得积分10
2分钟前
一个小胖子完成签到,获得积分10
3分钟前
cgs完成签到 ,获得积分10
4分钟前
Physio完成签到,获得积分10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
归尘应助科研通管家采纳,获得10
4分钟前
财路通八方完成签到 ,获得积分10
5分钟前
poki完成签到 ,获得积分10
5分钟前
Will完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889804
求助须知:如何正确求助?哪些是违规求助? 4173714
关于积分的说明 12952336
捐赠科研通 3935201
什么是DOI,文献DOI怎么找? 2159296
邀请新用户注册赠送积分活动 1177620
关于科研通互助平台的介绍 1082646