Integrating Grey Wolf Optimizer for Feature Selection in Birdsong Classification Using K-Nearest Neighbours Algorithm

计算机科学 选择(遗传算法) 人工智能 特征选择 模式识别(心理学) 特征(语言学) 算法 哲学 语言学
作者
Ricardus Anggi Pramunendar,Pulung Nurtantio Andono,Guruh Fajar Shidik,Rama Aria Megantara,Dewi Pergiwati,Dwi Puji Prabowo,Yuslena Sari,Way Lim
出处
期刊:International Journal of Intelligent Engineering and Systems [Intelligent Networks and Systems Society]
卷期号:16 (6): 695-705 被引量:2
标识
DOI:10.22266/ijies2023.1231.58
摘要

This study aims to improve the classification accuracy of birdsongs by selecting the most pertinent features.This is important because birds are exceptional environmental regulators, but many species are endangered.The community can be assisted in distinguishing bird species and conserving the local environment if the classification is more precise.Nevertheless, because of disruptive noise and unfavorable qualities in the whispering of these bird species, feature selection focuses on enhancing performance accuracy.The use of the gray wolf optimizer (GWO) technique has been employed to identify the most optimum features from the data after outlier removal by the application of k-means clustering, reducing noise through YAMNet, and feature synthesis using gammatone cepstral coefficients (GFCC).This work utilizes the GWO algorithm to address the constraint management challenges associated with high-dimensional data in birdsong classification.The fitness functions used in this research are derived from the K-nearest neighbors (KNN) algorithm.The objective is to devise innovative ways for effectively managing constraints in the context of high-dimensional data.The number of features was reduced by more than 30.7% compared to the initial number of features and obtained an accuracy of 81.06%, as determined by the evaluation outcomes.This discovery improves precision by 4% and surpasses prior research.In summary, this work showcases the effectiveness of the optimization method, especially of GWO.It makes a valuable contribution to advancing a new workflow for analyzing high-dimensional data, specifically in enhancing the classification of birdsongs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助酷炫的铸海采纳,获得10
1秒前
1秒前
yuon发布了新的文献求助10
2秒前
龙月完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助50
3秒前
4秒前
爆米花应助5433采纳,获得10
4秒前
李大锤发布了新的文献求助10
5秒前
6秒前
乐乐应助GGZ采纳,获得10
6秒前
明月清风发布了新的文献求助10
6秒前
教育厮完成签到,获得积分10
7秒前
硕大的肌肉完成签到,获得积分10
7秒前
8秒前
无花果应助GGZ采纳,获得10
10秒前
所所应助GGZ采纳,获得10
10秒前
汉堡包应助整齐千柳采纳,获得10
10秒前
10秒前
我是老大应助droke采纳,获得10
10秒前
mike_007发布了新的文献求助10
10秒前
Dr. Chen发布了新的文献求助10
11秒前
12秒前
shi发布了新的文献求助10
13秒前
眼圆广志完成签到,获得积分10
13秒前
大模型应助不二采纳,获得10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
科研通AI6应助最爱吃火锅采纳,获得10
15秒前
16秒前
gx发布了新的文献求助10
16秒前
跳跃笑阳发布了新的文献求助10
17秒前
clamon完成签到,获得积分10
17秒前
18秒前
卜学英发布了新的文献求助10
18秒前
19秒前
Shelby完成签到,获得积分10
19秒前
19秒前
酷波er应助饶天源采纳,获得10
19秒前
PINK完成签到,获得积分10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125515
求助须知:如何正确求助?哪些是违规求助? 4329288
关于积分的说明 13490854
捐赠科研通 4164202
什么是DOI,文献DOI怎么找? 2282786
邀请新用户注册赠送积分活动 1283874
关于科研通互助平台的介绍 1223196