Integrating Grey Wolf Optimizer for Feature Selection in Birdsong Classification Using K-Nearest Neighbours Algorithm

计算机科学 选择(遗传算法) 人工智能 特征选择 模式识别(心理学) 特征(语言学) 算法 哲学 语言学
作者
Ricardus Anggi Pramunendar,Pulung Nurtantio Andono,Guruh Fajar Shidik,Rama Aria Megantara,Dewi Pergiwati,Dwi Puji Prabowo,Yuslena Sari,Way Lim
出处
期刊:International Journal of Intelligent Engineering and Systems 卷期号:16 (6): 695-705 被引量:2
标识
DOI:10.22266/ijies2023.1231.58
摘要

This study aims to improve the classification accuracy of birdsongs by selecting the most pertinent features.This is important because birds are exceptional environmental regulators, but many species are endangered.The community can be assisted in distinguishing bird species and conserving the local environment if the classification is more precise.Nevertheless, because of disruptive noise and unfavorable qualities in the whispering of these bird species, feature selection focuses on enhancing performance accuracy.The use of the gray wolf optimizer (GWO) technique has been employed to identify the most optimum features from the data after outlier removal by the application of k-means clustering, reducing noise through YAMNet, and feature synthesis using gammatone cepstral coefficients (GFCC).This work utilizes the GWO algorithm to address the constraint management challenges associated with high-dimensional data in birdsong classification.The fitness functions used in this research are derived from the K-nearest neighbors (KNN) algorithm.The objective is to devise innovative ways for effectively managing constraints in the context of high-dimensional data.The number of features was reduced by more than 30.7% compared to the initial number of features and obtained an accuracy of 81.06%, as determined by the evaluation outcomes.This discovery improves precision by 4% and surpasses prior research.In summary, this work showcases the effectiveness of the optimization method, especially of GWO.It makes a valuable contribution to advancing a new workflow for analyzing high-dimensional data, specifically in enhancing the classification of birdsongs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zer完成签到,获得积分10
1秒前
共享精神应助香港采纳,获得10
2秒前
秀丽的晓凡完成签到,获得积分10
2秒前
易拉罐发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
松松完成签到,获得积分10
2秒前
3秒前
不是叶子完成签到,获得积分10
3秒前
小蘑菇应助细心的亦凝采纳,获得10
3秒前
香蕉觅云应助无辜善愁采纳,获得10
3秒前
666发布了新的文献求助10
3秒前
粗犷的灵松完成签到,获得积分10
4秒前
嘉心糖应助俏皮的睫毛膏采纳,获得20
4秒前
4秒前
4秒前
keyanzhang发布了新的文献求助10
5秒前
闵斯完成签到,获得积分20
5秒前
Summer发布了新的文献求助10
6秒前
lalalala发布了新的文献求助10
7秒前
wei关注了科研通微信公众号
8秒前
8秒前
天天快乐应助清音采纳,获得30
9秒前
9秒前
9秒前
小小酥被卷了完成签到,获得积分10
9秒前
9秒前
10秒前
酷波er应助zhzh0618采纳,获得10
11秒前
嘻嘻印完成签到,获得积分10
11秒前
嘉心糖应助余烬22采纳,获得20
11秒前
zhjp应助ExtroGod采纳,获得10
12秒前
Summer完成签到,获得积分10
12秒前
数学情缘发布了新的文献求助10
12秒前
12秒前
小宝爸爸发布了新的文献求助10
12秒前
浅言完成签到,获得积分10
12秒前
123发布了新的文献求助10
13秒前
小慧完成签到,获得积分20
13秒前
高分求助中
Lire en communiste 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168924
求助须知:如何正确求助?哪些是违规求助? 2820169
关于积分的说明 7929567
捐赠科研通 2480239
什么是DOI,文献DOI怎么找? 1321290
科研通“疑难数据库(出版商)”最低求助积分说明 633152
版权声明 602497