氢气储存
材料科学
氢
碳纤维
吸附低温
化学吸附
吸附
巴(单位)
化学工程
多孔性
范德瓦尔斯力
兴奋剂
体积热力学
热容
过渡金属
复合材料
热力学
物理化学
有机化学
分子
化学
催化作用
合金
物理
光电子学
复合数
气象学
工程类
作者
Xue Gao,Zeming Zhong,Liangjun Huang,Yuchen Mao,Hui Wang,Jiangwen Liu,Liuzhang Ouyang,Lei Zhang,Mengjiao Han,Xiuliang Ma,Min Zhu
出处
期刊:Nano Energy
[Elsevier]
日期:2023-10-27
卷期号:118: 109038-109038
被引量:13
标识
DOI:10.1016/j.nanoen.2023.109038
摘要
Porous carbon materials with high specific surface area are potential hydrogen storage materials. However, due to the weak van der Waals forces between the material and H2, hydrogen can generally be stored only at a cryogenic temperature under high hydrogen pressure. To solve this problem, in this work, ZIF-8-derived porous carbon material (PCM) modified with transition metals (PCM-TMs, TM: Mn, Fe, Ni) was prepared to investigate the role of TM doping. The developed PCM-TMs have a high specific surface area (up to 1363 m2/g) and pore volume (up to 0.77 cm3/g). Experimental results show that PCM-TMs exhibit higher hydrogen storage capacity, usable capacity, and hydrogen uptake capacity per specific surface area compared to PCM. In addition, PCM-TMs have a higher isosteric heat of adsorption (Qst) than PCM, which suggests that TM doping enhances the interaction between H2 and carbon materials. Theoretical calculations further indicate that this interaction is a nearly weak chemisorption force (∼9.32 kJ/mol). Notably, Mn-doped porous carbon material (PCM-Mn) exhibits a hydrogen storage capacity of ∼3.45 wt% (20.44 g/L) at 77 K under 35 bar-H2. Even at 253 K under 50 bar-H2, the capacity can reach ∼1.41 wt% (8.34 g/L). The hydrogen uptake capacity per specific surface area for PCM-Mn reaches 1.03 × 10-3 wt% / m2·g-1 at 253 K under 50 bar-H2, which is 1.5 times larger than that of PCM. Under proper operating conditions, such as loading at 77 K and 35 bar-H2, and discharging at 253 K and 2 bar-H2, PCM-Mn can achieve a usable capacity of at least 19.30 g/L. The hydrogenation kinetics curves reveal that PCM-Mn can store 1.39 wt%-H2 (8.25 g/L) under 12 MPa H2 at 298 K, while it is only 0.88 wt% (5.53 g/L) for PCM at the same condition. This work provides valuable insight into improving the hydrogen storage performance of hydrogen storage materials of physisorption.
科研通智能强力驱动
Strongly Powered by AbleSci AI