Verification of the manufacturing conditions for translucency ceramics are showed using powder forming and sintering method in order to establish the manufacturing technology for optical devices with arbitrary complex shape and shape retention, and optical excitation materials. However, this method is extremely difficult to obtain translucency ceramics because the combination of complex factors such as “the shape and particle size of the raw materials, forming conditions and sintering” adversely affect the translucency of the sintered material, which is caused by the transmitted light scattering of the sintered material. Therefore, we have succeeded in realizing transparent ceramics by examining these complicated factors (materials, molding, sintering conditions, crystallization) and specifying the amorphous sintering conditions and the densification-molding conditions necessary to eliminate the light scattering factors inherent in sintered materials. It is necessary to show the correlation of the volume change with respect to Tg-temperature and Tm-temperature, which are important regarding amorphization, considering the sintering treatment conditions that depend on the particle size of the raw material fine powder, and to specify the molding body-pressurization (pressure and time) conditions. These optimizations will make it possible to develop the expected high-functional-photoelectric optical devices with microstructures and, high-power laser light sources independent of materials.