Mechanism of internal thermal runaway propagation in blade batteries

热失控 传热 热的 热传导 热扩散率 扩散 对流 材料科学 机械 复合材料 物理 热力学 电池(电) 功率(物理)
作者
Xuning Feng,Fangshu Zhang,Wensheng Huang,Yong Peng,Chengshan Xu,Minggao Ouyang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:89: 184-194 被引量:15
标识
DOI:10.1016/j.jechem.2023.09.050
摘要

Blade batteries are extensively used in electric vehicles, but unavoidable thermal runaway is an inherent threat to their safe use. This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell. The results showed that the internal thermal runaway could propagate for up to 272 s, which is comparable to that of a traditional battery module. The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s−1, depending on both the electrolyte content and high-temperature gas diffusion. In the early stages of thermal runaway, the electrolyte participated in the reaction, which intensified the thermal runaway and accelerated its propagation. As the battery temperature increased, the electrolyte evaporated, which attenuated the acceleration effect. Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer. The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%. We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%–17.06%. Finally, the temperature rate curve was analyzed, and a three-stage mechanism for internal thermal runaway propagation was proposed. In Stage I, convective heat transfer from electrolyte evaporation locally increased the temperature to 100 °C. In Stage II, solid heat transfer locally increases the temperature to trigger thermal runaway. In Stage III, thermal runaway sharply increases the local temperature. The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情诗云发布了新的文献求助10
刚刚
烟花应助俏皮的采波采纳,获得10
1秒前
斯文可仁发布了新的文献求助10
1秒前
1秒前
轻松小刺猬完成签到,获得积分10
3秒前
思源应助帆帆采纳,获得10
8秒前
wenlon完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
16秒前
怡然白猫完成签到,获得积分10
17秒前
怡然白猫发布了新的文献求助10
19秒前
20秒前
22秒前
粗暴的鞋垫完成签到,获得积分10
22秒前
23秒前
24秒前
27秒前
麻花儿发布了新的文献求助10
27秒前
石小琴完成签到 ,获得积分10
27秒前
28秒前
步步完成签到 ,获得积分10
30秒前
31秒前
32秒前
阎听筠完成签到 ,获得积分10
32秒前
Zero完成签到,获得积分10
32秒前
天行健发布了新的文献求助10
33秒前
34秒前
英俊的铭应助沅芷采纳,获得10
34秒前
薯愿完成签到,获得积分10
34秒前
35秒前
Zzzjjj123发布了新的文献求助10
36秒前
36秒前
无花果应助123456789采纳,获得10
37秒前
LLL发布了新的文献求助10
37秒前
海的宁静关注了科研通微信公众号
37秒前
穆紫应助bofu采纳,获得10
38秒前
领导范儿应助麻花儿采纳,获得10
40秒前
lxj发布了新的文献求助10
40秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124648
求助须知:如何正确求助?哪些是违规求助? 2774953
关于积分的说明 7724821
捐赠科研通 2430484
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323