Mechanism of internal thermal runaway propagation in blade batteries

热失控 传热 热的 热传导 热扩散率 扩散 对流 材料科学 机械 复合材料 物理 热力学 电池(电) 功率(物理)
作者
Xuning Feng,Fangshu Zhang,Wensheng Huang,Yong Peng,Chengshan Xu,Minggao Ouyang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:89: 184-194 被引量:37
标识
DOI:10.1016/j.jechem.2023.09.050
摘要

Blade batteries are extensively used in electric vehicles, but unavoidable thermal runaway is an inherent threat to their safe use. This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell. The results showed that the internal thermal runaway could propagate for up to 272 s, which is comparable to that of a traditional battery module. The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s−1, depending on both the electrolyte content and high-temperature gas diffusion. In the early stages of thermal runaway, the electrolyte participated in the reaction, which intensified the thermal runaway and accelerated its propagation. As the battery temperature increased, the electrolyte evaporated, which attenuated the acceleration effect. Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer. The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%. We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%–17.06%. Finally, the temperature rate curve was analyzed, and a three-stage mechanism for internal thermal runaway propagation was proposed. In Stage I, convective heat transfer from electrolyte evaporation locally increased the temperature to 100 °C. In Stage II, solid heat transfer locally increases the temperature to trigger thermal runaway. In Stage III, thermal runaway sharply increases the local temperature. The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助飘逸青槐采纳,获得10
3秒前
wanyanjin发布了新的文献求助10
4秒前
ZDY完成签到,获得积分10
5秒前
Hmbb完成签到,获得积分10
6秒前
怎么说应助QL采纳,获得10
6秒前
921完成签到,获得积分10
8秒前
落羽完成签到,获得积分10
8秒前
sandyleung完成签到,获得积分10
9秒前
9秒前
wanyanjin完成签到,获得积分10
11秒前
Jsc完成签到 ,获得积分10
13秒前
Afaq发布了新的文献求助10
14秒前
14秒前
淡淡紫山发布了新的文献求助10
15秒前
小贾完成签到 ,获得积分10
15秒前
Fan完成签到 ,获得积分10
16秒前
19秒前
meng完成签到,获得积分10
21秒前
希望天下0贩的0应助lyh采纳,获得10
21秒前
orlov完成签到,获得积分10
23秒前
25秒前
Cookiee发布了新的文献求助10
28秒前
我想毕业完成签到 ,获得积分10
29秒前
琪琪的完成签到,获得积分10
32秒前
33秒前
瘦瘦凌丝完成签到 ,获得积分10
36秒前
bkagyin应助ycw123采纳,获得10
37秒前
Vv发布了新的文献求助10
37秒前
实验大牛完成签到 ,获得积分10
37秒前
乐乐应助lumingrui采纳,获得10
38秒前
38秒前
39秒前
neil_match完成签到,获得积分10
39秒前
Hayat给郑雅茵的求助进行了留言
42秒前
43秒前
Vv完成签到,获得积分20
43秒前
yls发布了新的文献求助10
43秒前
敢干发布了新的文献求助10
45秒前
Hello应助GX采纳,获得10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343