Lost in translation? Not for Large Language Models: Automated divergent thinking scoring performance translates to non-English contexts

创造力 计算机科学 论证(复杂分析) 对象(语法) 人工智能 比例(比率) 心理学 认知心理学 自然语言处理 社会心理学 生物化学 化学 物理 量子力学
作者
Aleksandra Zielińska,Peter Organisciak,Denis Dumas,Maciej Karwowski
出处
期刊:Thinking Skills and Creativity [Elsevier BV]
卷期号:50: 101414-101414 被引量:5
标识
DOI:10.1016/j.tsc.2023.101414
摘要

Divergent thinking (DT) has been at the heart of creativity measurement for over seven decades. At the same time, large-scale usage of DT tests is limited due to the tedious procedure of scoring the responses, which often requires several judges to assess thousands of participants’ ideas. Across two studies (N = 195 and N = 404), we examined the quality of artificial intelligence-based scoring models (Ocsai, Organisciak et al., 2023) to score Alternate Uses Tasks (Study 1: brick, Study 2: brick, can, rope). Based on more than 6000 ideas provided by participants in Polish and automatically translated to English, we fit a series of idea (response)- and prompt (object)-level structural equation models. When artificial intelligence-based and semantic distance scores were modeled together, latent correlations with human ratings ranged from r = 0.56 to r = 0.95 at the response (idea) level and from r = 0.61 to r = 0.99 at the object (prompt) level. A hierarchical (i.e., person-level) model with three DT tasks modeled together (Study 2) demonstrated a latent correlation between automatized and human ratings of r = 0.96 (Babbage) and r = 0.98 (DaVinci). Notably, the same results were obtained based on untranslated responses provided in Polish. Automated and human scores provided the same serial-order effect pattern and the same profile of differences under “be fluent” vs. “be creative” instructions. This investigation offers an initial yet compelling argument that the new algorithms provide a close-to-perfect score of DT tasks when benchmarked against human ratings, even when the responses are created in a different language and automatically translated to English or used in an untranslated form.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林非鹿完成签到,获得积分10
刚刚
YC发布了新的文献求助20
1秒前
1秒前
1秒前
马楼发布了新的文献求助10
2秒前
昏睡的胖粘完成签到 ,获得积分10
3秒前
4秒前
huohuo完成签到,获得积分10
4秒前
kk发布了新的文献求助10
5秒前
5秒前
Bugs完成签到,获得积分10
5秒前
Dr_Zayn关注了科研通微信公众号
6秒前
贺豪发布了新的文献求助10
6秒前
满意的妙海完成签到 ,获得积分10
7秒前
科研狗发布了新的文献求助10
7秒前
Mr_Qiu发布了新的文献求助10
7秒前
文艺卿发布了新的文献求助30
8秒前
伯赏诗霜发布了新的文献求助30
9秒前
10秒前
英勇星月发布了新的文献求助10
11秒前
11秒前
彭于晏应助wawa采纳,获得10
12秒前
kk发布了新的文献求助10
12秒前
如意2023发布了新的文献求助10
13秒前
13秒前
Akim应助penny采纳,获得10
14秒前
友好真发布了新的文献求助10
14秒前
在水一方应助晚安好梦采纳,获得10
14秒前
15秒前
共享精神应助kk采纳,获得10
16秒前
满意的含芙完成签到,获得积分20
17秒前
Krstal完成签到 ,获得积分10
18秒前
庾摇伽完成签到 ,获得积分10
19秒前
20秒前
搜集达人应助如意2023采纳,获得10
20秒前
李长安完成签到,获得积分10
22秒前
毛舰完成签到 ,获得积分10
22秒前
24秒前
痴情的靖柔完成签到 ,获得积分10
24秒前
kk发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502715
关于积分的说明 11109873
捐赠科研通 3233579
什么是DOI,文献DOI怎么找? 1787443
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152