Estimation of elastic modulus of recycle aggregate concrete based on hybrid and ensemble‐hybrid approaches

骨料(复合) Boosting(机器学习) 数学优化 粒子群优化 计算机科学 公制(单位) 生物系统 数学 人工智能 材料科学 工程类 运营管理 复合材料 生物
作者
Bing Qu
出处
期刊:Structural Concrete [Wiley]
卷期号:25 (2): 1364-1387 被引量:2
标识
DOI:10.1002/suco.202300611
摘要

Abstract The utilization of recycled aggregate concrete (RAC) within the construction sector has the potential to prevent irreversible harm to the environment and reduce the depletion of natural resources. Nonetheless, it is essential to scrutinize the quality of RAC before utilizing it in practical applications. RAC's most significant design parameter is its elastic modulus, typically determined through time‐consuming and costly experiments. Machine learning (ML) techniques can be a feasible solution to reduce the number of experiments required and obtain accurate estimates. This article employs two robust ML techniques, namely Xtreme Gradient Boosting (XGB) and Adaptive Boosting regression, in three distinct modes, namely individual, hybrid, and ensemble‐hybrid methods. Furthermore, phasor particle swarm optimization (PPSO) and chaos game optimization (CGO) have been utilized in hybrid and ensemble‐hybrid modes to optimize final results, minimize errors, and obtain highly precise outcomes. As mentioned earlier, several evaluators were employed to identify the most appropriate model to compare the modes. The findings suggest that the relevant optimizers significantly contributed to achieving superior metric values. Specifically, the results indicated that PPSO exhibited greater efficacy than CGO in optimizing outputs and enhancing accuracy. The hybrid models, particularly XGB in conjunction with PPSO, yielded the most favorable correlation coefficient and root mean square error values equal to 0.996 and 0.336 and can serve as an effective ML method to determine elastic modulus of recycle aggregate concrete for time and energy storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
怡心亭发布了新的文献求助20
2秒前
3秒前
jinghong发布了新的文献求助10
3秒前
隐形曼青应助xiaosu采纳,获得10
4秒前
4秒前
4秒前
4秒前
彭于晏应助开心的凝荷采纳,获得10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
wkwwkwkwk完成签到 ,获得积分10
7秒前
07完成签到,获得积分20
8秒前
不倦发布了新的文献求助10
8秒前
BINGBING1230发布了新的文献求助10
9秒前
兜兜完成签到 ,获得积分10
9秒前
甜甜完成签到 ,获得积分10
9秒前
一眼丁真发布了新的文献求助10
10秒前
10秒前
10秒前
111饿的人是关注了科研通微信公众号
10秒前
10秒前
11秒前
Xman完成签到,获得积分10
11秒前
凉小远发布了新的文献求助10
11秒前
11秒前
12秒前
XIGUA发布了新的文献求助10
12秒前
嘻嘻发布了新的文献求助10
13秒前
Cy发布了新的文献求助10
14秒前
朝阳发布了新的文献求助10
14秒前
汉堡包应助Nature_Science采纳,获得10
15秒前
听月眠完成签到,获得积分10
15秒前
student发布了新的文献求助10
16秒前
搜集达人应助绿夏采纳,获得10
16秒前
友好听云发布了新的文献求助10
16秒前
混子发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493