Use of artificial intelligence in determination of bone age of the healthy individuals: A scoping review

医学 骨龄 系统回顾 科学网 梅德林 斯科普斯 人工智能 荟萃分析 病理 计算机科学 内科学 政治学 法学
作者
Adeel Ahmed Bajjad,Seema Gupta,Soumitra Agarwal,Rakesh Ashok Pawar,Mansi U. Kothawade,Gopendro Singh
出处
期刊:Journal of the world federation of orthodontists [Elsevier]
卷期号:13 (2): 95-102 被引量:3
标识
DOI:10.1016/j.ejwf.2023.10.001
摘要

Background Bone age assessment, as an indicator of biological age, is widely used in orthodontics and pediatric endocrinology. Owing to significant subject variations in the manual method of assessment, artificial intelligence (AI), machine learning (ML), and deep learning (DL) play a significant role in this aspect. A scoping review was conducted to search the existing literature on the role of AI, ML, and DL in skeletal age or bone age assessment in healthy individuals. Methods A literature search was conducted in PubMed, Scopus, and Web of Science from January 2012 to December 2022 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses–Extension for Scoping Reviews (PRISMA-ScR) and Joanna Briggs Institute guidelines. Grey literature was searched using Google Scholar and OpenGrey. Hand-searching of the articles in all the reputed orthodontic journals and the references of the included articles were also searched for relevant articles for the present scoping review. Results Nineteen articles that fulfilled the inclusion criteria were included. Ten studies used skeletal maturity indicators based on hand and wrist radiographs, two studies used magnetic resonance imaging and seven studies used cervical vertebrae maturity indicators based on lateral cephalograms to assess the skeletal age of the individuals. Most of these studies were published in non-orthodontic medical journals. BoneXpert automated software was the most commonly used software, followed by DL models, and ML models in the studies for assessment of bone age. The automated method was found to be as reliable as the manual method for assessment. Conclusions This scoping review validated the use of AI, ML, or DL in bone age assessment of individuals. A more uniform distribution of sufficient samples in different stages of maturation, use of three-dimensional inputs such as magnetic resonance imaging, and cone beam computed tomography is required for better training of the models to generalize the outputs for use in the target population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助雨的前世采纳,获得10
刚刚
ZIS完成签到,获得积分10
刚刚
emergency发布了新的文献求助10
3秒前
与一完成签到,获得积分10
4秒前
栗子鱼完成签到,获得积分10
4秒前
lxx完成签到 ,获得积分10
5秒前
5秒前
10711完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
9秒前
10秒前
10秒前
beisuwind发布了新的文献求助10
11秒前
nano发布了新的文献求助10
12秒前
bigben446发布了新的文献求助10
12秒前
666发布了新的文献求助10
14秒前
枯蚀发布了新的文献求助10
14秒前
16秒前
paper reader完成签到,获得积分10
17秒前
17秒前
小心完成签到 ,获得积分10
17秒前
絮语应助岁岁安采纳,获得10
17秒前
平淡思雁完成签到,获得积分10
19秒前
paper reader发布了新的文献求助30
19秒前
21秒前
yangll发布了新的文献求助10
22秒前
月月呀发布了新的文献求助10
22秒前
zho关闭了zho文献求助
23秒前
23秒前
25秒前
27秒前
zb发布了新的文献求助10
27秒前
新晋学术小生完成签到 ,获得积分10
28秒前
枯蚀完成签到,获得积分10
28秒前
逍遥猪皮完成签到,获得积分10
29秒前
淡淡乐巧发布了新的文献求助10
30秒前
31秒前
Owen应助najibveto采纳,获得10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151938
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852661
捐赠科研通 2460630
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760