Use of artificial intelligence in determination of bone age of the healthy individuals: A scoping review

医学 骨龄 系统回顾 科学网 梅德林 斯科普斯 人工智能 荟萃分析 病理 计算机科学 内科学 政治学 法学
作者
Adeel Ahmed Bajjad,Seema Gupta,Soumitra Agarwal,Rakesh Ashok Pawar,Mansi U. Kothawade,Gul Singh
出处
期刊:Journal of the world federation of orthodontists [Elsevier]
卷期号:13 (2): 95-102 被引量:3
标识
DOI:10.1016/j.ejwf.2023.10.001
摘要

Background Bone age assessment, as an indicator of biological age, is widely used in orthodontics and pediatric endocrinology. Owing to significant subject variations in the manual method of assessment, artificial intelligence (AI), machine learning (ML), and deep learning (DL) play a significant role in this aspect. A scoping review was conducted to search the existing literature on the role of AI, ML, and DL in skeletal age or bone age assessment in healthy individuals. Methods A literature search was conducted in PubMed, Scopus, and Web of Science from January 2012 to December 2022 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses–Extension for Scoping Reviews (PRISMA-ScR) and Joanna Briggs Institute guidelines. Grey literature was searched using Google Scholar and OpenGrey. Hand-searching of the articles in all the reputed orthodontic journals and the references of the included articles were also searched for relevant articles for the present scoping review. Results Nineteen articles that fulfilled the inclusion criteria were included. Ten studies used skeletal maturity indicators based on hand and wrist radiographs, two studies used magnetic resonance imaging and seven studies used cervical vertebrae maturity indicators based on lateral cephalograms to assess the skeletal age of the individuals. Most of these studies were published in non-orthodontic medical journals. BoneXpert automated software was the most commonly used software, followed by DL models, and ML models in the studies for assessment of bone age. The automated method was found to be as reliable as the manual method for assessment. Conclusions This scoping review validated the use of AI, ML, or DL in bone age assessment of individuals. A more uniform distribution of sufficient samples in different stages of maturation, use of three-dimensional inputs such as magnetic resonance imaging, and cone beam computed tomography is required for better training of the models to generalize the outputs for use in the target population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
侦察兵发布了新的文献求助10
1秒前
自然乐松关注了科研通微信公众号
1秒前
zqfxc完成签到,获得积分10
1秒前
sumeiling完成签到,获得积分20
1秒前
朴素的鸡完成签到,获得积分20
2秒前
大七发布了新的文献求助10
2秒前
zzzq完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
请叫我风吹麦浪应助卡卡采纳,获得10
3秒前
传奇3应助起司嗯采纳,获得10
4秒前
remimazolam发布了新的文献求助10
5秒前
在水一方应助悦耳寒松采纳,获得10
5秒前
满座完成签到,获得积分10
5秒前
科研通AI2S应助coffee采纳,获得10
5秒前
6秒前
雪山飞龙发布了新的文献求助30
6秒前
科研通AI5应助phd采纳,获得10
7秒前
善学以致用应助京阿尼采纳,获得10
7秒前
Sylvia完成签到,获得积分10
7秒前
朴素的鸡发布了新的文献求助10
7秒前
SCI发布了新的文献求助10
7秒前
凹凸曼打小傻蛋完成签到 ,获得积分10
8秒前
Enoch完成签到,获得积分10
8秒前
Sara完成签到,获得积分10
8秒前
8秒前
zhuzhu发布了新的文献求助20
8秒前
YUZU发布了新的文献求助10
9秒前
9秒前
10秒前
shirleeyeahe完成签到,获得积分10
11秒前
11秒前
特特雷珀萨努完成签到 ,获得积分10
11秒前
京阿尼完成签到,获得积分10
11秒前
风雨发布了新的文献求助10
11秒前
orixero应助今非采纳,获得10
11秒前
平常的G完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794