可解释性
强化学习
计算机科学
人工智能
分解
多样性(政治)
代表(政治)
机器学习
数据科学
认知科学
人机交互
心理学
生态学
政治
社会学
生物
法学
人类学
政治学
作者
Chenghao Li,Tonghan Wang,Chengjie Wu,Qianchuan Zhao,Jun Yang,Chongjie Zhang
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2023-11-07
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2023.3326744
摘要
Subtask decomposition offers a promising approach for achieving and comprehending complex cooperative behaviors in multiagent systems. Nonetheless, existing methods often depend on intricate high-level strategies, which can hinder interpretability and learning efficiency. To tackle these challenges, we propose a novel approach that specializes subtasks for subgroups by employing diverse observation representation encoders within information bottlenecks. Moreover, to enhance the efficiency of subtask specialization while promoting sophisticated cooperation, we introduce diversity in both optimization and neural network architectures. These advancements enable our method to achieve state-of-the-art performance and offer interpretable subtask factorization across various scenarios in Google Research Football (GRF).
科研通智能强力驱动
Strongly Powered by AbleSci AI