Temporal Refinement Graph Convolutional Network for Skeleton-based Action Recognition

RGB颜色模型 计算机科学 人工智能 图形 模式识别(心理学) 特征学习 帧速率 代表(政治) 水准点(测量) 理论计算机科学 大地测量学 政治 政治学 法学 地理
作者
Tianming Zhuang,Zhen Qin,Yi Ding,Fuhu Deng,LeDuo Chen,Zhiguang Qin,Kim‐Kwang Raymond Choo
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tai.2023.3329799
摘要

Human skeleton data, which has served in the aspect of human activity recognition, ought to be the most representative biometric characteristics due to its intuitivity and visuality. The state-of-the-art approaches mainly focus on improving modeling spatial correlations within graph topologies. However, the interframes motional representations are also of vital importance, and we argue that they are worth paying attention to and exploring. Therefore, a temporal refinement module with contrastive learning mechanism is proposed, fusing as a complementary to the conventional spatial graph convolution layer. In addition, in order to further exploiting the inter-frame variances and generalizing GCN operation to temporal dimension, a temporal-correlation matrix is introduced to effectively capture dynamic dependencies within frame-pairs, enhancing semantic feature representation. Moreover, since GCN is a typical local operator which lacks of capability to fully model the long-term relations along spatial and temporal variation, to move beyond the limitation, a spatialtemporal cascaded aggregation module is designed to enlarge the receptive filter scale. The overall recognition framework consists of three above novelties, which is capable of achieving remarkable performance by evaluating on benchmark datasets(i.e., NTU RGB+D 60, NTU RGB+D 120, PKU-MMD and Kinetics Skeleton 400). Extensive experiments demonstrate the effectiveness of the proposed framework, e.g., performing recognition accuracy rate of 90.9% and 96.8% on NTU RGB+D 60, 87.9% and 88.9% on NTU RGB+D 120.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心网络完成签到,获得积分10
刚刚
yyyyy完成签到 ,获得积分10
刚刚
仁爱水卉完成签到,获得积分20
1秒前
酷波er应助ww采纳,获得10
1秒前
2秒前
冷傲宛海发布了新的文献求助10
2秒前
好好完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
123完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助100
6秒前
小二郎应助元狩采纳,获得10
6秒前
ding应助元狩采纳,获得10
6秒前
7秒前
大君哥发布了新的文献求助10
7秒前
7秒前
贰鸟应助蘑菇采纳,获得10
7秒前
pipi1412完成签到,获得积分10
7秒前
sunshine发布了新的文献求助10
7秒前
ggg完成签到 ,获得积分10
8秒前
文艺寄灵发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
小王发布了新的文献求助10
9秒前
Akim应助淡定采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
单于黎云完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
冷静的胜完成签到,获得积分10
11秒前
JZJZJZ发布了新的文献求助10
11秒前
11秒前
叶上发布了新的文献求助10
12秒前
geen完成签到,获得积分10
12秒前
彭于晏应助韓大侠采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154