Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network

事故(哲学) 计算机科学 数据挖掘 贝叶斯推理 贝叶斯网络 贝叶斯概率 推论 事件(粒子物理) 精确性和召回率 人工智能 哲学 认识论 物理 量子力学
作者
Xiyuan Chen,Xiaoping Ma,Limin Jia,Zhipeng Zhang,Fei Chen,Ruojin Wang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:243: 109781-109781 被引量:16
标识
DOI:10.1016/j.ress.2023.109781
摘要

As the freight railway system is a typical complex system, freight railway accidents have various and complex accident scenes. A Data-Driven Bayesian Network (DDBN) with random variables representing scene elements, accident causes, and accident consequences as nodes, and conditional dependencies between nodes as edges is proposed to identify the most significant accident causes in various and complex specific accident scenes. First, an unsupervised-supervised method is designed to define the states of nodes in the DDBN, considering the characteristics of the data involving both continuous and discrete states. Second, a greedy algorithm is proposed to mine the causal sequence between nodes, and the direction of edges in DDBN is established accordingly. Then, an NB-K2-MLE approach is proposed to generate the structure and parameters of the DDBN from data. Finally, a risk calculation function based on DDBN is proposed to calculate the risk of various accident causes in specific scenes. In empirical analysis based on real accident data, the inference accuracy of DDBN reached 87.92 %, with precision and recall exceeding 70 %. More importantly, the research results indicate that the distribution of accident causes will concentrate with the refinement and specific of the scene, and the main accident causes at the macro level cannot be fully applicable to accident prevention in specific scenes. The DDBN constructed in this study can provide data support for the determination of the significant accident causes and the development of targeted accident prevention strategies in various and complex specific scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wwx完成签到,获得积分10
3秒前
朴实巧荷完成签到 ,获得积分10
4秒前
Jey发布了新的文献求助10
5秒前
faiting完成签到,获得积分10
5秒前
spenley发布了新的文献求助10
5秒前
高兴123发布了新的文献求助30
6秒前
星汉完成签到,获得积分10
8秒前
9秒前
滔滔完成签到,获得积分10
9秒前
怕黑的马里奥完成签到,获得积分10
10秒前
11秒前
彪壮的绮梅应助kkk采纳,获得10
14秒前
14秒前
悠明夜月完成签到 ,获得积分10
14秒前
滔滔发布了新的文献求助10
16秒前
16秒前
慕容夜梅发布了新的文献求助10
17秒前
小赵小赵完成签到,获得积分10
17秒前
君君完成签到 ,获得积分10
18秒前
烟花应助xcf6653采纳,获得10
19秒前
多发文章完成签到,获得积分10
21秒前
22秒前
三张发布了新的文献求助10
22秒前
HJJHJH发布了新的文献求助100
23秒前
还好还好完成签到,获得积分10
24秒前
Jey完成签到,获得积分10
26秒前
完美世界应助科研通管家采纳,获得10
27秒前
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
yanzu应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
27秒前
俏皮半烟应助科研通管家采纳,获得10
27秒前
pluto应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
pluto应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
pluto应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671764
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9780106
捐赠科研通 2938766
什么是DOI,文献DOI怎么找? 1610218
邀请新用户注册赠送积分活动 760611
科研通“疑难数据库(出版商)”最低求助积分说明 736096