AVDNet: Joint coronary artery and vein segmentation with topological consistency

分割 人工智能 冠状动脉 计算机科学 动脉 医学 一致性(知识库) 冠状动脉疾病 计算机视觉 静脉 图像分割 模式识别(心理学) 放射科 心脏病学 内科学
作者
Wenji Wang,Qing Xia,Zhennan Yan,Zhiqiang Hu,Yinan Chen,Wen Zheng,Xiao Wang,Shaoping Nie,Dimitris Metaxas,Shaoting Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:91: 102999-102999 被引量:6
标识
DOI:10.1016/j.media.2023.102999
摘要

Coronary CT angiography (CCTA) is an effective and non-invasive method for coronary artery disease diagnosis. Extracting an accurate coronary artery tree from CCTA image is essential for centerline extraction, plaque detection, and stenosis quantification. In practice, data quality varies. Sometimes, the arteries and veins have similar intensities and locate closely, which may confuse segmentation algorithms, even deep learning based ones, to obtain accurate arteries. However, it is not always feasible to re-scan the patient for better image quality. In this paper, we propose an artery and vein disentanglement network (AVDNet) for robust and accurate segmentation by incorporating the coronary vein into the segmentation task. This is the first work to segment coronary artery and vein at the same time. The AVDNet consists of an image based vessel recognition network (IVRN) and a topology based vessel refinement network (TVRN). IVRN learns to segment the arteries and veins, while TVRN learns to correct the segmentation errors based on topology consistency. We also design a novel inverse distance weighted dice (IDD) loss function to recover more thin vessel branches and preserve the vascular boundaries. Extensive experiments are conducted on a multi-center dataset of 700 patients. Quantitative and qualitative results demonstrate the effectiveness of the proposed method by comparing it with state-of-the-art methods and different variants. Prediction results of the AVDNet on the Automated Segmentation of Coronary Artery Challenge dataset are avaliabel at https://github.com/WennyJJ/Coronary-Artery-Vein-Segmentation for follow-up research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yydsyyd完成签到 ,获得积分10
刚刚
研友_5Zl9D8完成签到,获得积分10
1秒前
壮观千筹完成签到,获得积分20
3秒前
iNk举报耍酷海白求助涉嫌违规
3秒前
Estrella应助平淡的邪欢采纳,获得10
3秒前
8秒前
9秒前
嗯哼哈哈发布了新的文献求助10
9秒前
季不住完成签到,获得积分10
9秒前
大雄的梦想是什么完成签到 ,获得积分10
10秒前
独特翠丝完成签到,获得积分20
10秒前
LX完成签到,获得积分10
11秒前
一颗小行星完成签到 ,获得积分10
11秒前
腿毛没啦完成签到,获得积分10
12秒前
积极上进的小润完成签到,获得积分10
13秒前
King16发布了新的文献求助10
13秒前
氨基酸脱氨完成签到,获得积分10
13秒前
17秒前
18秒前
19秒前
HalfGumps完成签到,获得积分10
19秒前
nicelily完成签到 ,获得积分20
19秒前
魔叶树完成签到 ,获得积分10
21秒前
妙bu可yan完成签到,获得积分10
21秒前
qianmo完成签到 ,获得积分10
21秒前
善学以致用应助xyy102采纳,获得10
22秒前
King16完成签到,获得积分10
22秒前
邢文瑞发布了新的文献求助50
23秒前
啦啦啦啦德玛西亚完成签到,获得积分10
23秒前
呆萌寻琴完成签到,获得积分10
23秒前
Ye发布了新的文献求助10
25秒前
嗯哼哈哈完成签到 ,获得积分10
26秒前
问心发布了新的文献求助10
27秒前
liii完成签到 ,获得积分10
27秒前
28秒前
小小瑾完成签到,获得积分10
31秒前
34秒前
wangayting发布了新的文献求助30
34秒前
谷鸿飞发布了新的文献求助20
35秒前
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139849
求助须知:如何正确求助?哪些是违规求助? 2790719
关于积分的说明 7796422
捐赠科研通 2447131
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185