梨
生物
基因组
端粒
遗传学
基因复制
基因
节段重复
康蒂格
染色体
基因家族
植物
作者
Manyi Sun,Chenjie Yao,Qun Shu,Yingyun He,Guosong Chen,Guangyan Yang,Shaozhuo Xu,Yueyuan Liu,Zhaolong Xue,Jun Wu
摘要
Previously released pear genomes contain a plethora of gaps and unanchored genetic regions. Here, we report a telomere-to-telomere (T2T) gap-free genome for the red-skinned pear, 'Yunhong No. 1' (YH1; Pyrus pyrifolia), which is mainly cultivated in Yunnan Province (southwest China), the pear's primary region of origin. The YH1 genome is 501.20 Mb long with a contig N50 length of 29.26 Mb. All 17 chromosomes were assembled to the T2T level with 34 characterized telomeres. The 17 centromeres were predicted and mainly consist of centromeric-specific monomers (CEN198) and long terminal repeat (LTR) Gypsy elements (≥74.73%). By filling all unclosed gaps, the integrity of YH1 is markedly improved over previous P. pyrifolia genomes ('Cuiguan' and 'Nijisseiki'). A total of 1531 segmental duplication (SD) driven duplicated genes were identified and enriched in stress response pathways. Intrachromosomal SDs drove the expansion of disease resistance genes, suggesting the potential of SDs in adaptive pear evolution. A large proportion of duplicated gene pairs exhibit dosage effects or sub-/neo-functionalization, which may affect agronomic traits like stone cell content, sugar content, and fruit skin russet. Furthermore, as core regulators of anthocyanin biosynthesis, we found that MYB10 and MYB114 underwent various gene duplication events. Multiple copies of MYB10 and MYB114 displayed obvious dosage effects, indicating role differentiation in the formation of red-skinned pear fruit. In summary, the T2T gap-free pear genome provides invaluable resources for genome evolution and functional genomics.
科研通智能强力驱动
Strongly Powered by AbleSci AI