亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MDF-Net: A Multi-Scale Dynamic Fusion Network for Breast Tumor Segmentation of Ultrasound Images

分割 计算机科学 人工智能 散斑噪声 判别式 模式识别(心理学) 噪音(视频) 图像分割 特征(语言学) 人工神经网络 尺度空间分割 斑点图案 计算机视觉 图像(数学) 语言学 哲学
作者
Wenbo Qi,H. C. Wu,S. C. Chan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4842-4855 被引量:39
标识
DOI:10.1109/tip.2023.3304518
摘要

Breast tumor segmentation of ultrasound images provides valuable information of tumors for early detection and diagnosis. Accurate segmentation is challenging due to low image contrast between areas of interest; speckle noises, and large inter-subject variations in tumor shape and size. This paper proposes a novel Multi-scale Dynamic Fusion Network (MDF-Net) for breast ultrasound tumor segmentation. It employs a two-stage end-to-end architecture with a trunk sub-network for multiscale feature selection and a structurally optimized refinement sub-network for mitigating impairments such as noise and inter-subject variation via better feature exploration and fusion. The trunk network is extended from UNet++ with a simplified skip pathway structure to connect the features between adjacent scales. Moreover, deep supervision at all scales, instead of at the finest scale in UNet++, is proposed to extract more discriminative features and mitigate errors from speckle noise via a hybrid loss function. Unlike previous works, the first stage is linked to a loss function of the second stage so that both the preliminary segmentations and refinement subnetworks can be refined together at training. The refinement sub-network utilizes a structurally optimized MDF mechanism to integrate preliminary segmentation information (capturing general tumor shape and size) at coarse scales and explores inter-subject variation information at finer scales. Experimental results from two public datasets show that the proposed method achieves better Dice and other scores over state-of-the-art methods. Qualitative analysis also indicates that our proposed network is more robust to tumor size/shapes, speckle noise and heavy posterior shadows along tumor boundaries. An optional post-processing step is also proposed to facilitate users in mitigating segmentation artifacts. The efficiency of the proposed network is also illustrated on the "Electron Microscopy neural structures segmentation dataset". It outperforms a state-of-the-art algorithm based on UNet-2022 with simpler settings. This indicates the advantages of our MDF-Nets in other challenging image segmentation tasks with small to medium data sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
散装洋芋发布了新的文献求助10
4秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
yipmyonphu应助科研通管家采纳,获得10
16秒前
Linos应助科研通管家采纳,获得10
16秒前
16秒前
Linos应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
20秒前
Yanhai发布了新的文献求助10
25秒前
遗忘完成签到,获得积分10
37秒前
yys10l完成签到,获得积分10
43秒前
懒大王完成签到 ,获得积分10
44秒前
yys完成签到,获得积分10
45秒前
我爱物理完成签到,获得积分20
48秒前
快乐芷荷完成签到 ,获得积分10
51秒前
桐桐应助我爱物理采纳,获得10
52秒前
123study0完成签到,获得积分10
56秒前
57秒前
114514完成签到,获得积分10
58秒前
喜悦的小土豆完成签到 ,获得积分10
59秒前
Dliii完成签到 ,获得积分10
1分钟前
1分钟前
雪白的威完成签到,获得积分10
1分钟前
Nickzzz发布了新的文献求助10
1分钟前
wyz完成签到,获得积分10
1分钟前
Docgyj完成签到 ,获得积分0
1分钟前
zero1122发布了新的文献求助10
1分钟前
小马甲应助柠檬没我萌采纳,获得10
1分钟前
YZChen完成签到,获得积分10
1分钟前
Dreamer完成签到,获得积分10
1分钟前
清秀的盼烟关注了科研通微信公众号
1分钟前
1分钟前
小蘑菇应助zyz采纳,获得10
1分钟前
1分钟前
1分钟前
星辰大海应助1234采纳,获得10
1分钟前
悠哉发布了新的文献求助10
1分钟前
悦耳以旋发布了新的文献求助10
1分钟前
olivia完成签到 ,获得积分10
1分钟前
003完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554659
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512628
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458247