MDF-Net: A Multi-Scale Dynamic Fusion Network for Breast Tumor Segmentation of Ultrasound Images

分割 计算机科学 人工智能 散斑噪声 判别式 模式识别(心理学) 噪音(视频) 图像分割 特征(语言学) 人工神经网络 尺度空间分割 斑点图案 计算机视觉 图像(数学) 语言学 哲学
作者
Wenbo Qi,H. C. Wu,S. C. Chan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4842-4855 被引量:39
标识
DOI:10.1109/tip.2023.3304518
摘要

Breast tumor segmentation of ultrasound images provides valuable information of tumors for early detection and diagnosis. Accurate segmentation is challenging due to low image contrast between areas of interest; speckle noises, and large inter-subject variations in tumor shape and size. This paper proposes a novel Multi-scale Dynamic Fusion Network (MDF-Net) for breast ultrasound tumor segmentation. It employs a two-stage end-to-end architecture with a trunk sub-network for multiscale feature selection and a structurally optimized refinement sub-network for mitigating impairments such as noise and inter-subject variation via better feature exploration and fusion. The trunk network is extended from UNet++ with a simplified skip pathway structure to connect the features between adjacent scales. Moreover, deep supervision at all scales, instead of at the finest scale in UNet++, is proposed to extract more discriminative features and mitigate errors from speckle noise via a hybrid loss function. Unlike previous works, the first stage is linked to a loss function of the second stage so that both the preliminary segmentations and refinement subnetworks can be refined together at training. The refinement sub-network utilizes a structurally optimized MDF mechanism to integrate preliminary segmentation information (capturing general tumor shape and size) at coarse scales and explores inter-subject variation information at finer scales. Experimental results from two public datasets show that the proposed method achieves better Dice and other scores over state-of-the-art methods. Qualitative analysis also indicates that our proposed network is more robust to tumor size/shapes, speckle noise and heavy posterior shadows along tumor boundaries. An optional post-processing step is also proposed to facilitate users in mitigating segmentation artifacts. The efficiency of the proposed network is also illustrated on the "Electron Microscopy neural structures segmentation dataset". It outperforms a state-of-the-art algorithm based on UNet-2022 with simpler settings. This indicates the advantages of our MDF-Nets in other challenging image segmentation tasks with small to medium data sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三七二十一完成签到 ,获得积分10
1秒前
简单567应助逆转采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
Lucas应助孙靖博采纳,获得10
2秒前
choup53完成签到,获得积分10
2秒前
jimmy完成签到,获得积分20
3秒前
现代的书本完成签到,获得积分10
3秒前
4秒前
LL完成签到,获得积分10
6秒前
开心小鸭子完成签到,获得积分10
6秒前
6秒前
xj305完成签到,获得积分10
7秒前
liyiliyi117完成签到,获得积分10
9秒前
9秒前
9秒前
RDQ完成签到,获得积分10
10秒前
宁静致远完成签到,获得积分10
10秒前
zy完成签到 ,获得积分10
11秒前
zhangyanxi完成签到,获得积分10
13秒前
腿毛怪大叔完成签到,获得积分10
13秒前
111完成签到,获得积分10
13秒前
呜呼完成签到,获得积分10
13秒前
白枫完成签到 ,获得积分0
14秒前
传奇3应助jimmy采纳,获得10
14秒前
屋子完成签到,获得积分10
14秒前
杨胜菲完成签到,获得积分10
15秒前
孙靖博发布了新的文献求助10
16秒前
港崽宝宝完成签到,获得积分10
17秒前
17秒前
shaw发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
soda完成签到,获得积分10
19秒前
李_小_八完成签到,获得积分10
19秒前
19秒前
XZZH完成签到,获得积分10
20秒前
21秒前
21秒前
mintlya完成签到,获得积分10
21秒前
litianchi完成签到,获得积分10
22秒前
Sunshine发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5765205
求助须知:如何正确求助?哪些是违规求助? 5559522
关于积分的说明 15407703
捐赠科研通 4900027
什么是DOI,文献DOI怎么找? 2636147
邀请新用户注册赠送积分活动 1584368
关于科研通互助平台的介绍 1539610