MDF-Net: A Multi-Scale Dynamic Fusion Network for Breast Tumor Segmentation of Ultrasound Images

分割 计算机科学 人工智能 散斑噪声 判别式 模式识别(心理学) 噪音(视频) 图像分割 特征(语言学) 人工神经网络 尺度空间分割 斑点图案 计算机视觉 图像(数学) 语言学 哲学
作者
Wenbo Qi,H. C. Wu,S. C. Chan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4842-4855 被引量:16
标识
DOI:10.1109/tip.2023.3304518
摘要

Breast tumor segmentation of ultrasound images provides valuable information of tumors for early detection and diagnosis. Accurate segmentation is challenging due to low image contrast between areas of interest; speckle noises, and large inter-subject variations in tumor shape and size. This paper proposes a novel Multi-scale Dynamic Fusion Network (MDF-Net) for breast ultrasound tumor segmentation. It employs a two-stage end-to-end architecture with a trunk sub-network for multiscale feature selection and a structurally optimized refinement sub-network for mitigating impairments such as noise and inter-subject variation via better feature exploration and fusion. The trunk network is extended from UNet++ with a simplified skip pathway structure to connect the features between adjacent scales. Moreover, deep supervision at all scales, instead of at the finest scale in UNet++, is proposed to extract more discriminative features and mitigate errors from speckle noise via a hybrid loss function. Unlike previous works, the first stage is linked to a loss function of the second stage so that both the preliminary segmentations and refinement subnetworks can be refined together at training. The refinement sub-network utilizes a structurally optimized MDF mechanism to integrate preliminary segmentation information (capturing general tumor shape and size) at coarse scales and explores inter-subject variation information at finer scales. Experimental results from two public datasets show that the proposed method achieves better Dice and other scores over state-of-the-art methods. Qualitative analysis also indicates that our proposed network is more robust to tumor size/shapes, speckle noise and heavy posterior shadows along tumor boundaries. An optional post-processing step is also proposed to facilitate users in mitigating segmentation artifacts. The efficiency of the proposed network is also illustrated on the "Electron Microscopy neural structures segmentation dataset". It outperforms a state-of-the-art algorithm based on UNet-2022 with simpler settings. This indicates the advantages of our MDF-Nets in other challenging image segmentation tasks with small to medium data sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
khwafdoih发布了新的文献求助10
1秒前
3秒前
4秒前
英姑应助不二子采纳,获得30
4秒前
wuhuhu发布了新的文献求助10
5秒前
若空行走发布了新的文献求助20
5秒前
6秒前
灰灰完成签到,获得积分10
6秒前
ding应助xun采纳,获得10
6秒前
HarUkii发布了新的文献求助10
6秒前
田様应助terryok采纳,获得30
6秒前
victor完成签到,获得积分10
6秒前
科研通AI5应助Romme采纳,获得30
7秒前
乐乐应助积极山雁采纳,获得10
8秒前
8秒前
安123完成签到,获得积分10
9秒前
KYT关闭了KYT文献求助
10秒前
无语发布了新的文献求助10
11秒前
11秒前
12秒前
14秒前
14秒前
14秒前
风趣采白发布了新的文献求助10
14秒前
16秒前
16秒前
terryok发布了新的文献求助30
17秒前
18秒前
yutang发布了新的文献求助10
19秒前
JYT发布了新的文献求助50
19秒前
研友_VZG7GZ应助Sophiaye采纳,获得10
19秒前
19秒前
科研通AI6应助yxy采纳,获得10
19秒前
领导范儿应助清脆的夜白采纳,获得10
20秒前
馆长应助Rita采纳,获得30
20秒前
爱听歌的寄云完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
积极山雁发布了新的文献求助10
23秒前
虚心的颜发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4907686
求助须知:如何正确求助?哪些是违规求助? 4184596
关于积分的说明 12994737
捐赠科研通 3951119
什么是DOI,文献DOI怎么找? 2166819
邀请新用户注册赠送积分活动 1185410
关于科研通互助平台的介绍 1091841