MDF-Net: A Multi-Scale Dynamic Fusion Network for Breast Tumor Segmentation of Ultrasound Images

分割 计算机科学 人工智能 散斑噪声 判别式 模式识别(心理学) 噪音(视频) 图像分割 特征(语言学) 人工神经网络 尺度空间分割 斑点图案 计算机视觉 图像(数学) 语言学 哲学
作者
Wenbo Qi,H. C. Wu,S. C. Chan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4842-4855 被引量:11
标识
DOI:10.1109/tip.2023.3304518
摘要

Breast tumor segmentation of ultrasound images provides valuable information of tumors for early detection and diagnosis. Accurate segmentation is challenging due to low image contrast between areas of interest; speckle noises, and large inter-subject variations in tumor shape and size. This paper proposes a novel Multi-scale Dynamic Fusion Network (MDF-Net) for breast ultrasound tumor segmentation. It employs a two-stage end-to-end architecture with a trunk sub-network for multiscale feature selection and a structurally optimized refinement sub-network for mitigating impairments such as noise and inter-subject variation via better feature exploration and fusion. The trunk network is extended from UNet++ with a simplified skip pathway structure to connect the features between adjacent scales. Moreover, deep supervision at all scales, instead of at the finest scale in UNet++, is proposed to extract more discriminative features and mitigate errors from speckle noise via a hybrid loss function. Unlike previous works, the first stage is linked to a loss function of the second stage so that both the preliminary segmentations and refinement subnetworks can be refined together at training. The refinement sub-network utilizes a structurally optimized MDF mechanism to integrate preliminary segmentation information (capturing general tumor shape and size) at coarse scales and explores inter-subject variation information at finer scales. Experimental results from two public datasets show that the proposed method achieves better Dice and other scores over state-of-the-art methods. Qualitative analysis also indicates that our proposed network is more robust to tumor size/shapes, speckle noise and heavy posterior shadows along tumor boundaries. An optional post-processing step is also proposed to facilitate users in mitigating segmentation artifacts. The efficiency of the proposed network is also illustrated on the "Electron Microscopy neural structures segmentation dataset". It outperforms a state-of-the-art algorithm based on UNet-2022 with simpler settings. This indicates the advantages of our MDF-Nets in other challenging image segmentation tasks with small to medium data sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uu驳回了vlots应助
1秒前
NexusExplorer应助CAST1347采纳,获得10
2秒前
科研通AI2S应助努力采纳,获得10
2秒前
fedehe完成签到 ,获得积分10
4秒前
活力元龙完成签到 ,获得积分10
4秒前
聪明的烨霖完成签到,获得积分10
5秒前
li应助文件撤销了驳回
6秒前
more应助杰瑞采纳,获得50
8秒前
9秒前
是一个小朋友完成签到,获得积分10
9秒前
luoyaguwu发布了新的文献求助10
14秒前
乔丹完成签到,获得积分10
16秒前
努力完成签到,获得积分10
17秒前
mystryjoker发布了新的文献求助10
18秒前
bkagyin应助满当当采纳,获得10
20秒前
不配.应助聪明的烨霖采纳,获得10
21秒前
21秒前
1257应助醋醋采纳,获得10
21秒前
爱可可月完成签到 ,获得积分10
22秒前
搜集达人应助容止采纳,获得10
22秒前
喵拟吗喵完成签到,获得积分10
22秒前
22秒前
23秒前
how完成签到 ,获得积分10
23秒前
桐桐应助luoyaguwu采纳,获得10
23秒前
life发布了新的文献求助10
25秒前
25秒前
Raymond应助大胆洋葱采纳,获得10
26秒前
花花发布了新的文献求助10
26秒前
欻欻发布了新的文献求助10
26秒前
情怀应助kkdkg采纳,获得10
27秒前
CQ发布了新的文献求助10
27秒前
yin完成签到 ,获得积分10
28秒前
28秒前
搜集达人应助Crazy111采纳,获得10
28秒前
XC完成签到,获得积分10
33秒前
心型尤加利完成签到,获得积分10
34秒前
不配.应助科研通管家采纳,获得20
34秒前
打打应助科研通管家采纳,获得10
34秒前
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760