GIaNt: Protein-Ligand Binding Affinity Prediction via Geometry-Aware Interactive Graph Neural Network

计算机科学 理论计算机科学 图形 人工神经网络 人工智能
作者
Shuangli Li,Jingbo Zhou,Tong Xu,Liang Huang,Fan Wang,Haoyi Xiong,Weili Huang,Dejing Dou,Hui Xiong
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (5): 1991-2008 被引量:3
标识
DOI:10.1109/tkde.2023.3314502
摘要

Drug discovery often relies on the successful prediction of protein-ligand binding affinity. Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes. However, existing solutions usually treat protein-ligand complexes as topological graph data, thus the 3D geometry-based biomolecular structural information is not fully utilized. The essential intermolecular interactions with long-range dependencies, including type-wise interactions and molecule-wise interactions, are also neglected in GNN models. To this end, we propose a geometry-aware interactive graph neural network ( GIaNt ) which consists of two components: 3D geometric graph learning network ( 3DG-Net ) and pairwise interactive learning network ( Pi-Net ). Specifically, 3DG-Net iteratively performs the node-edge interaction process to update embeddings of nodes and edges in a unified framework while preserving the 3D geometric factors among atoms, including spatial distance, polar angle and dihedral angle information in 3D space. Moreover, Pi-Net is adopted to incorporate both element type-level and molecule-level interactions. Specially, interactive edges are gathered with a subsequent reconstruction loss to reflect the global type-level interactions. Meanwhile, a pairwise attentive pooling scheme is designed to identify the critical interactive atoms for complex representation learning from a semantic view. An exhaustive experimental study on two benchmarks verifies the superiority of GIaNt .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xuexue0001发布了新的文献求助30
2秒前
英姑应助小小乖采纳,获得10
3秒前
3秒前
zhongzz发布了新的文献求助10
4秒前
4秒前
科研通AI5应助曾玉婷采纳,获得10
8秒前
清爽的洋葱完成签到,获得积分20
14秒前
14秒前
111完成签到 ,获得积分10
16秒前
96完成签到,获得积分20
16秒前
钟琪完成签到,获得积分10
16秒前
小鳄鱼夸夸完成签到,获得积分10
16秒前
科研通AI5应助清爽的洋葱采纳,获得10
17秒前
17秒前
19秒前
22秒前
wkyt完成签到 ,获得积分10
22秒前
一一完成签到 ,获得积分10
22秒前
22秒前
清爽天川发布了新的文献求助10
23秒前
搬砖的完成签到,获得积分10
24秒前
hjygzv发布了新的文献求助10
24秒前
英俊的铭应助96采纳,获得10
24秒前
钟琪发布了新的文献求助10
25秒前
Lilith发布了新的文献求助10
25秒前
少林一只蛋完成签到,获得积分10
27秒前
共享精神应助空白采纳,获得10
28秒前
李健应助zhongzz采纳,获得10
28秒前
Athos_1992给Athos_1992的求助进行了留言
28秒前
科研通AI5应助清爽的洋葱采纳,获得30
29秒前
xuexue0001完成签到,获得积分20
29秒前
JR完成签到,获得积分10
29秒前
情怀应助yangyang采纳,获得10
31秒前
瘦瘦寄风发布了新的文献求助30
31秒前
曾玉婷发布了新的文献求助10
32秒前
32秒前
35秒前
35秒前
李健的小迷弟应助hjygzv采纳,获得10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738341
求助须知:如何正确求助?哪些是违规求助? 3281845
关于积分的说明 10026652
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645324
邀请新用户注册赠送积分活动 782749
科研通“疑难数据库(出版商)”最低求助积分说明 749901