Tube-Based Robust Model Predictive Control for Tracking Control of Autonomous Articulated Vehicles

稳健性(进化) 模型预测控制 控制理论(社会学) 计算机科学 执行机构 跟踪误差 理论(学习稳定性) 控制工程 车辆动力学 工程类 模拟 控制(管理) 人工智能 汽车工程 机器学习 生物化学 化学 基因
作者
Dasol Jeong,Seibum B. Choi
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2184-2196 被引量:1
标识
DOI:10.1109/tiv.2023.3320795
摘要

Articulated vehicles play a critical role in the transportation industry, but the rise in truck-related accidents necessitates effective solutions. Autonomous driving presents a promising approach to enhancing safety. Among autonomous technologies, this paper presents a framework for an autonomous vehicle tracking control algorithm utilizing tube-based robust model predictive control (RMPC). The primary objective is to achieve precise path tracking while ensuring performance, safety, and robustness even with modeling errors. The framework adopts a lumped dynamics model for articulated vehicles, which reduces computational complexity while preserving linearity. Specific constraints of articulated vehicles are integrated to guarantee stability, safety, and adherence to actuator limits. The tube-based RMPC technique reliably satisfies constraints under worst-case scenarios, thereby addressing robustness against modeling errors. The proposed algorithm employs tube-based RMPC to ensure the safety and robustness of autonomous articulated vehicles. In the design of the tracking controller, error tube analysis between the actual plant and the prediction model plays a vital role. An error tube analysis method and framework are introduced through simulation. Performance evaluations of the proposed algorithm and previous tracking controllers are conducted through comparative simulations. Previous algorithms exhibited tracking errors exceeding 50 cm, posing potential safety risks. In contrast, the proposed algorithm demonstrates tracking errors of less than 50 cm. Furthermore, the proposed algorithm exhibits notable stability. The results demonstrate that the proposed algorithm enables accurate and safe tracking of complex autonomous articulated vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lolitam发布了新的文献求助10
刚刚
2秒前
FashionBoy应助每天都要开心采纳,获得10
3秒前
4秒前
哈呜哈巫完成签到,获得积分20
7秒前
7秒前
罗燕完成签到 ,获得积分10
7秒前
哦哦完成签到,获得积分10
8秒前
8秒前
桐桐应助小圆饼干采纳,获得30
9秒前
10秒前
奋斗的盼柳完成签到 ,获得积分10
11秒前
12秒前
丘比特应助Labman采纳,获得10
12秒前
chenhunhun完成签到,获得积分10
12秒前
传奇3应助贪玩路灯采纳,获得10
13秒前
苏玖染发布了新的文献求助10
13秒前
13秒前
玺月洛离完成签到,获得积分10
13秒前
14秒前
小蘑菇应助aa采纳,获得10
15秒前
16秒前
16秒前
所所应助华仔采纳,获得10
16秒前
哈呜哈巫发布了新的文献求助10
16秒前
17秒前
共享精神应助allofme采纳,获得10
17秒前
Kvolu29发布了新的文献求助10
17秒前
yanyan发布了新的文献求助10
17秒前
科研通AI2S应助徐小采纳,获得10
17秒前
18秒前
科研通AI2S应助enterdawn采纳,获得10
19秒前
孙铭泽发布了新的文献求助10
19秒前
福中医发布了新的文献求助10
19秒前
pluto应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
不配.应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
不配.应助科研通管家采纳,获得10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245645
求助须知:如何正确求助?哪些是违规求助? 2889398
关于积分的说明 8257916
捐赠科研通 2557696
什么是DOI,文献DOI怎么找? 1386434
科研通“疑难数据库(出版商)”最低求助积分说明 650327
邀请新用户注册赠送积分活动 626641