已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Tube-Based Robust Model Predictive Control for Tracking Control of Autonomous Articulated Vehicles

稳健性(进化) 模型预测控制 控制理论(社会学) 计算机科学 执行机构 跟踪误差 理论(学习稳定性) 控制工程 车辆动力学 工程类 模拟 控制(管理) 人工智能 汽车工程 机器学习 基因 生物化学 化学
作者
Dasol Jeong,Seibum B. Choi
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 2184-2196 被引量:1
标识
DOI:10.1109/tiv.2023.3320795
摘要

Articulated vehicles play a critical role in the transportation industry, but the rise in truck-related accidents necessitates effective solutions. Autonomous driving presents a promising approach to enhancing safety. Among autonomous technologies, this paper presents a framework for an autonomous vehicle tracking control algorithm utilizing tube-based robust model predictive control (RMPC). The primary objective is to achieve precise path tracking while ensuring performance, safety, and robustness even with modeling errors. The framework adopts a lumped dynamics model for articulated vehicles, which reduces computational complexity while preserving linearity. Specific constraints of articulated vehicles are integrated to guarantee stability, safety, and adherence to actuator limits. The tube-based RMPC technique reliably satisfies constraints under worst-case scenarios, thereby addressing robustness against modeling errors. The proposed algorithm employs tube-based RMPC to ensure the safety and robustness of autonomous articulated vehicles. In the design of the tracking controller, error tube analysis between the actual plant and the prediction model plays a vital role. An error tube analysis method and framework are introduced through simulation. Performance evaluations of the proposed algorithm and previous tracking controllers are conducted through comparative simulations. Previous algorithms exhibited tracking errors exceeding 50 cm, posing potential safety risks. In contrast, the proposed algorithm demonstrates tracking errors of less than 50 cm. Furthermore, the proposed algorithm exhibits notable stability. The results demonstrate that the proposed algorithm enables accurate and safe tracking of complex autonomous articulated vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙子文发布了新的文献求助10
2秒前
优美的问凝完成签到 ,获得积分10
2秒前
2秒前
lvolt完成签到,获得积分10
3秒前
无喱酱发布了新的文献求助10
3秒前
不良帅完成签到,获得积分10
6秒前
6秒前
yydragen应助guojingjing采纳,获得10
7秒前
汉堡包应助阿秋秋秋采纳,获得10
7秒前
677完成签到,获得积分10
8秒前
啦啦啦完成签到 ,获得积分10
8秒前
欢欢完成签到,获得积分20
8秒前
oceana发布了新的文献求助10
8秒前
8秒前
dd完成签到 ,获得积分10
9秒前
11秒前
dnnnsns给dnnnsns的求助进行了留言
11秒前
啦啦啦关注了科研通微信公众号
11秒前
热情安卉发布了新的文献求助10
11秒前
中单阿飞完成签到,获得积分10
13秒前
流歌发布了新的文献求助10
13秒前
充电宝应助孙子文采纳,获得10
13秒前
小鲤鱼完成签到 ,获得积分10
14秒前
欢欢发布了新的文献求助10
15秒前
guojingjing完成签到,获得积分10
15秒前
Xieyusen发布了新的文献求助10
16秒前
平淡满天发布了新的文献求助10
18秒前
19秒前
爆米花应助大方小白采纳,获得10
19秒前
桐桐应助moncypool采纳,获得10
20秒前
CodeCraft应助与山采纳,获得10
21秒前
流歌完成签到,获得积分10
22秒前
cllcx发布了新的文献求助10
23秒前
23秒前
直率的思雁完成签到,获得积分10
23秒前
28秒前
楠子发布了新的文献求助10
28秒前
cllcx完成签到,获得积分10
28秒前
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959920
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128046
捐赠科研通 3238071
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021