Accurate Multi-contrast MRI Super-Resolution via a Dual Cross-Attention Transformer Network

计算机科学 人工智能 对比度(视觉) 计算机视觉 串联(数学) 图像分辨率 模式识别(心理学) 数学 组合数学
作者
Shoujin Huang,Jingyu Li,Lifeng Mei,Tan Zhang,Ziran Chen,Yuhan Dong,Linzheng Dong,Shaojun Liu,Mengye Lyu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 313-322 被引量:2
标识
DOI:10.1007/978-3-031-43999-5_30
摘要

Magnetic Resonance Imaging (MRI) is a critical imaging tool in clinical diagnosis, but obtaining high-resolution MRI images can be challenging due to hardware and scan time limitations. Recent studies have shown that using reference images from multi-contrast MRI data could improve super-resolution quality. However, the commonly employed strategies, e.g., channel concatenation or hard-attention based texture transfer, may not be optimal given the visual differences between multi-contrast MRI images. To address these limitations, we propose a new Dual Cross-Attention Multi-contrast Super Resolution (DCAMSR) framework. This approach introduces a dual cross-attention transformer architecture, where the features of the reference image and the up-sampled input image are extracted and promoted with both spatial and channel attention in multiple resolutions. Unlike existing hard-attention based methods where only the most correlated features are sought via the highly down-sampled reference images, the proposed architecture is more powerful to capture and fuse the shareable information between the multi-contrast images. Extensive experiments are conducted on fastMRI knee data at high field and more challenging brain data at low field, demonstrating that DCAMSR can substantially outperform the state-of-the-art single-image and multi-contrast MRI super-resolution methods, and even remains robust in a self-referenced manner. The code for DCAMSR is avaliable at https://github.com/Solor-pikachu/DCAMSR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大饼发布了新的文献求助10
刚刚
icarus1812发布了新的文献求助10
1秒前
枕安发布了新的文献求助10
1秒前
1秒前
1秒前
上官若男应助泡泡采纳,获得30
2秒前
可爱的函函应助空白采纳,获得10
2秒前
2秒前
Owen应助小帅采纳,获得10
2秒前
3秒前
善学以致用应助Derik采纳,获得10
4秒前
传奇3应助繁荣的过客采纳,获得10
5秒前
6秒前
6秒前
打打应助鱼儿会飞采纳,获得10
6秒前
天真大神发布了新的文献求助10
6秒前
JIE发布了新的文献求助10
6秒前
淡淡的丹彤完成签到 ,获得积分10
7秒前
科研通AI2S应助无情的蜗牛采纳,获得10
7秒前
snail完成签到,获得积分10
8秒前
Don发布了新的文献求助10
8秒前
陈兮兮发布了新的文献求助10
8秒前
icarus1812完成签到,获得积分10
9秒前
10秒前
文艺的青旋完成签到 ,获得积分10
10秒前
糊涂的含卉完成签到,获得积分10
10秒前
beleve发布了新的文献求助10
11秒前
敬老院N号应助兴奋的香芦采纳,获得30
11秒前
遥远的尧应助伊伊采纳,获得10
14秒前
竹杖芒鞋发布了新的文献求助10
14秒前
14秒前
14秒前
今后应助任性期待采纳,获得30
14秒前
15秒前
17秒前
鲜艳的芝麻应助MgZn采纳,获得10
17秒前
嗯哇1关注了科研通微信公众号
17秒前
18秒前
慎独而已发布了新的文献求助10
18秒前
孤烟发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038