Unsupervised Multimodal Remote Sensing Image Registration via Domain Adaptation

计算机科学 人工智能 情态动词 计算机视觉 遥感 模式识别(心理学) 高光谱成像 图像配准 相互信息 图像(数学) 地理 化学 高分子化学
作者
Lukui Shi,Ruiyun Zhao,Bin Pan,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:16
标识
DOI:10.1109/tgrs.2023.3333889
摘要

Registration of multi-modal remote sensing images with geometric distortions is one of the fundamental applications, but it remains difficult since multi-modal remote sensing images have significant differences in both radiometric and geometric features. One of the challenges is the disregarding of modality-specific information, which hinders the model from focusing on the content information of structure and texture due to differences in radiometric features. In this paper, an unsupervised Content-focused Hierarchical Alignment Network (CHA-Net) is proposed, which is constructed based on the theory of domain adaptation. The kernel idea of CHA-Net is to weaken the style differences among different modal images and achieve non-rigid multi-modal remote sensing image registration. CHA-Net is a hierarchical refinement model, where different scales of features are aligned respectively by utilizing the field calibration module and gradually generating the registration field. To be specific, CHA-Net consists of two structures: the Siamese Feature Decoupling (SFD) structure and the Hierarchical Refinement Alignment (HRA) structure. The SFD aims at reducing the style differences caused by cross-modal differences and developing a shared-weight Siamese network to map images to content feature space. The HRA enhances the ability of the network by capturing global distortions based on the Transformer model. Experiments on public datasets indicate that compared with other methods, CHA-Net performs better when geometric and radiometric distortions appear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
遇鲸还潮完成签到,获得积分10
1秒前
火星上的醉山完成签到,获得积分10
1秒前
2秒前
2秒前
彭于晏应助霸气的菠萝采纳,获得10
2秒前
黄宇航完成签到,获得积分10
3秒前
爆米花应助wwwww采纳,获得10
3秒前
hyr完成签到,获得积分20
3秒前
3秒前
3秒前
汤圆本圆完成签到,获得积分10
4秒前
粥粥发布了新的文献求助10
4秒前
4秒前
彭于晏应助Echo采纳,获得10
4秒前
代沁完成签到,获得积分10
4秒前
cony发布了新的文献求助10
4秒前
4秒前
刘凤莲完成签到,获得积分20
5秒前
5秒前
K先生发布了新的文献求助10
5秒前
三分糖去冰完成签到 ,获得积分10
5秒前
无极微光应助科研通管家采纳,获得20
6秒前
大个应助科研通管家采纳,获得10
6秒前
迃幵发布了新的文献求助10
6秒前
求助人员应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
zmz驳回了肉鸡应助
7秒前
酷波er应助是小高呀采纳,获得10
7秒前
Doctor_Peng完成签到,获得积分10
7秒前
SciGPT应助小化采纳,获得20
7秒前
7秒前
8秒前
大大发布了新的文献求助10
8秒前
情怀应助夕荀采纳,获得10
8秒前
药药55完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034