Unsupervised Multimodal Remote Sensing Image Registration via Domain Adaptation

计算机科学 人工智能 情态动词 计算机视觉 遥感 模式识别(心理学) 高光谱成像 图像配准 相互信息 图像(数学) 地理 化学 高分子化学
作者
Lukui Shi,Ruiyun Zhao,Bin Pan,Zhengxia Zou,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:1
标识
DOI:10.1109/tgrs.2023.3333889
摘要

Registration of multi-modal remote sensing images with geometric distortions is one of the fundamental applications, but it remains difficult since multi-modal remote sensing images have significant differences in both radiometric and geometric features. One of the challenges is the disregarding of modality-specific information, which hinders the model from focusing on the content information of structure and texture due to differences in radiometric features. In this paper, an unsupervised Content-focused Hierarchical Alignment Network (CHA-Net) is proposed, which is constructed based on the theory of domain adaptation. The kernel idea of CHA-Net is to weaken the style differences among different modal images and achieve non-rigid multi-modal remote sensing image registration. CHA-Net is a hierarchical refinement model, where different scales of features are aligned respectively by utilizing the field calibration module and gradually generating the registration field. To be specific, CHA-Net consists of two structures: the Siamese Feature Decoupling (SFD) structure and the Hierarchical Refinement Alignment (HRA) structure. The SFD aims at reducing the style differences caused by cross-modal differences and developing a shared-weight Siamese network to map images to content feature space. The HRA enhances the ability of the network by capturing global distortions based on the Transformer model. Experiments on public datasets indicate that compared with other methods, CHA-Net performs better when geometric and radiometric distortions appear.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助200
1秒前
研友_VZG7GZ应助小回采纳,获得10
1秒前
1秒前
3秒前
3秒前
4秒前
英俊的铭应助俗人采纳,获得10
4秒前
大模型应助qq采纳,获得10
4秒前
5秒前
chunyan_sysu完成签到,获得积分10
5秒前
杨和发布了新的文献求助10
5秒前
冰河的羊发布了新的文献求助10
8秒前
杨和完成签到,获得积分10
11秒前
华仔应助笑点低方盒采纳,获得10
11秒前
12秒前
里里发布了新的文献求助10
12秒前
俭朴的皮卡丘完成签到 ,获得积分10
13秒前
SciGPT应助Sharyn227采纳,获得10
13秒前
情怀应助Ternura采纳,获得30
17秒前
123完成签到,获得积分10
17秒前
jitanxiang发布了新的文献求助10
17秒前
17秒前
大黄豆发布了新的文献求助10
18秒前
18秒前
21秒前
22秒前
潘爱玲发布了新的文献求助10
22秒前
Nariy完成签到,获得积分10
23秒前
衣裳薄完成签到,获得积分10
25秒前
科研通AI2S应助下雨天采纳,获得10
25秒前
qq发布了新的文献求助10
27秒前
27秒前
啦啦啦完成签到,获得积分10
28秒前
28秒前
jitanxiang完成签到,获得积分10
29秒前
30秒前
Akim应助Ethan采纳,获得10
30秒前
30秒前
大黄豆完成签到,获得积分10
30秒前
所所应助乙酰唑胺采纳,获得10
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234201
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216151
捐赠科研通 2548179
什么是DOI,文献DOI怎么找? 1377602
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302