Fault Diagnosis Method for Railway Turnout with Pinball Loss-Based Multiclass Support Matrix Machine

可解释性 支持向量机 计算机科学 断层(地质) 基质(化学分析) 数据挖掘 特征(语言学) 故障检测与隔离 人工智能 概化理论 维数(图论) 模式识别(心理学) 可靠性工程 机器学习 工程类 数学 统计 地震学 执行机构 复合材料 地质学 纯数学 语言学 哲学 材料科学
作者
Mingyi Geng,Zhongwei Xu,Meng Mei
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (22): 12375-12375
标识
DOI:10.3390/app132212375
摘要

The intelligent maintenance of railway equipment plays a pivotal role in advancing the sustainability of transportation and manufacturing. Railway turnouts, being an essential component of railway infrastructure, often encounter various faults, which present operational challenges. Existing fault diagnosis methods for railway turnouts primarily utilize vectorized monitoring data, interpreted either through vector-based models or distance-based measurements. However, these methods exhibit limited interpretability or are heavily reliant on standard curves, which impairs their performance or restricts their generalizability. To address these limitations, a railway turnouts fault diagnosis method with monitoring signal images and support matrix machine is proposed herein. In addition, a pinball loss-based multiclass support matrix machine (PL-MSMM) is designed to address the noise sensitivity limitations of the multiclass support matrix machine (MSMM). First, the time-series monitoring signals in one dimension are transformed into images in two dimensions. Subsequently, the image-based feature matrix is constructed. Then, the PL-MSMM model is trained using the feature matrix to facilitate the fault diagnosis. The proposed method is evaluated using a real-world operational current dataset, achieving a fault identification accuracy rate of 98.67%. This method outperforms the existing method in terms of accuracy, precision, and F1-score, demonstrating its superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
了0完成签到 ,获得积分10
1秒前
会笑的黑猫完成签到,获得积分10
1秒前
夜半完成签到,获得积分20
1秒前
Hepatology完成签到,获得积分10
1秒前
1秒前
1秒前
哎哟很烦完成签到,获得积分10
1秒前
yar应助科研通管家采纳,获得10
2秒前
十二应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
任老师发布了新的文献求助10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
yar应助科研通管家采纳,获得10
2秒前
阿瑾发布了新的文献求助10
2秒前
momo应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
坦率耳机应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
916应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得30
3秒前
田様应助科研通管家采纳,获得10
3秒前
坦率的匪应助科研通管家采纳,获得20
3秒前
收拾收拾应助科研通管家采纳,获得10
3秒前
dhts应助京墨采纳,获得10
3秒前
李健应助LLL采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
星辰大海应助zyx采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650