Got (Optimal) Milk? Pooling Donations in Human Milk Banks with Machine Learning and Optimization

联营 捐赠 人工智能 计算机科学 运筹学 业务 经济 数学 经济增长
作者
Timothy C. Y. Chan,Rafid Mahmood,Deborah L. O’Connor,Debbie Stone,Sharon Unger,Rachel K. Wong,Ian Yihang Zhu
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:27 (6): 1721-1739 被引量:7
标识
DOI:10.1287/msom.2022.0455
摘要

Problem definition: Human donor milk provides critical nutrition for millions of infants who are born preterm each year. Donor milk is collected, processed, and distributed by milk banks. The macronutrient content of donor milk is directly linked to infant brain development and can vary substantially across donations, which is why multiple donations are typically pooled together to create a final product. Approximately half of all milk banks in North America do not have the resources to measure the macronutrient content of donor milk, which means pooling is done heuristically. For these milk banks, an approach is needed to optimize pooling decisions. Methodology/results: We propose a data-driven framework combining machine learning and optimization to predict macronutrient content of donations and then optimally combine them in pools, respectively. In collaboration with our partner milk bank, we collect a data set of milk to train our predictive models. We rigorously simulate milk bank practices to fine-tune our optimization models and evaluate operational scenarios such as changes in donation habits during the COVID-19 pandemic. Finally, we conduct a year-long trial implementation, where we observe the current nurse-led pooling practices followed by our intervention. Pools created by our approach meet clinical macronutrient targets approximately 31% more often than the baseline, although taking 60% less recipe creation time. Managerial implications: This is the first paper in the broader blending literature that combines machine learning and optimization. We demonstrate that such pipelines are feasible to implement in a healthcare setting and can yield significant improvements over current practices. Our insights can guide practitioners in any application area seeking to implement machine learning and optimization-based decision support. History: This paper has been accepted as part of the 2023 Manufacturing & Service Operations Management Practice-Based Research Competition. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.0455 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lv完成签到,获得积分10
刚刚
刚刚
GuMingyang发布了新的文献求助10
1秒前
2秒前
传奇3应助年年年年采纳,获得10
3秒前
小武完成签到,获得积分10
4秒前
4秒前
LX完成签到,获得积分10
4秒前
Mangooo完成签到,获得积分10
4秒前
猫猫无敌完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
聪明帅哥发布了新的文献求助10
5秒前
skycool发布了新的文献求助10
5秒前
5秒前
回复对方完成签到,获得积分10
6秒前
6秒前
理li发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
6秒前
7秒前
7秒前
果称完成签到,获得积分10
7秒前
ZS驳回了Akim应助
8秒前
猫猫无敌发布了新的文献求助10
8秒前
9秒前
朴素八宝粥完成签到,获得积分10
9秒前
10秒前
完美世界应助余泽楷采纳,获得10
10秒前
苦行僧发布了新的文献求助30
11秒前
甄昕发布了新的文献求助10
11秒前
11秒前
852应助skycool采纳,获得10
11秒前
12秒前
笨笨凡松完成签到,获得积分10
12秒前
滴答完成签到 ,获得积分10
12秒前
负责雨安发布了新的文献求助10
12秒前
13秒前
路过蜻蜓完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400