Got (Optimal) Milk? Pooling Donations in Human Milk Banks with Machine Learning and Optimization

联营 捐赠 人工智能 计算机科学 运筹学 业务 经济 数学 经济增长
作者
Timothy C. Y. Chan,Rafid Mahmood,Deborah L. O’Connor,Debbie Stone,Sharon Unger,Rachel K. Wong,Ian Yihang Zhu
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/msom.2022.0455
摘要

AboutSectionsRequest Access ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked InEmail Go to Section HomeManufacturing & Service Operations ManagementAhead of Print Got (Optimal) Milk? Pooling Donations in Human Milk Banks with Machine Learning and OptimizationTimothy C. Y. Chan , Rafid Mahmood , Deborah L. O'Connor , Debbie Stone, Sharon Unger , Rachel K. Wong, Ian Yihang Zhu Timothy C. Y. Chan , Rafid Mahmood , Deborah L. O'Connor , Debbie Stone, Sharon Unger , Rachel K. Wong, Ian Yihang Zhu Published Online:17 Nov 2023https://doi.org/10.1287/msom.2022.0455AbstractProblem definition: Human donor milk provides critical nutrition for millions of infants who are born preterm each year. Donor milk is collected, processed, and distributed by milk banks. The macronutrient content of donor milk is directly linked to infant brain development and can vary substantially across donations, which is why multiple donations are typically pooled together to create a final product. Approximately half of all milk banks in North America do not have the resources to measure the macronutrient content of donor milk, which means pooling is done heuristically. For these milk banks, an approach is needed to optimize pooling decisions. Methodology/results: We propose a data-driven framework combining machine learning and optimization to predict macronutrient content of donations and then optimally combine them in pools, respectively. In collaboration with our partner milk bank, we collect a data set of milk to train our predictive models. We rigorously simulate milk bank practices to fine-tune our optimization models and evaluate operational scenarios such as changes in donation habits during the COVID-19 pandemic. Finally, we conduct a year-long trial implementation, where we observe the current nurse-led pooling practices followed by our intervention. Pools created by our approach meet clinical macronutrient targets approximately 31% more often than the baseline, although taking 60% less recipe creation time. Managerial implications: This is the first paper in the broader blending literature that combines machine learning and optimization. We demonstrate that such pipelines are feasible to implement in a healthcare setting and can yield significant improvements over current practices. Our insights can guide practitioners in any application area seeking to implement machine learning and optimization-based decision support.History: This paper has been accepted as part of the 2023 Manufacturing & Service Operations Management Practice-Based Research Competition.Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.0455. Previous Back to Top Next FiguresReferencesRelatedInformation Articles In Advance Article Information Supplemental Materials Metrics Information Received:September 11, 2022Accepted:September 30, 2023Published Online:November 17, 2023 Copyright © 2023, INFORMSCite asTimothy C. Y. Chan, Rafid Mahmood, Deborah L. O'Connor, Debbie Stone, Sharon Unger, Rachel K. Wong, Ian Yihang Zhu (2023) Got (Optimal) Milk? Pooling Donations in Human Milk Banks with Machine Learning and Optimization. Manufacturing & Service Operations Management 0(0). https://doi.org/10.1287/msom.2022.0455 Keywordshealthcare operations managementmachine learningoptimizationsimulationmilk banksneonatal caretrial implementationPDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
打打应助吐司匹林采纳,获得10
2秒前
初雪平寒发布了新的文献求助10
3秒前
5秒前
6秒前
二中所长完成签到,获得积分10
6秒前
ured发布了新的文献求助10
7秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
1257应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得20
10秒前
研友_VZG7GZ应助科研通管家采纳,获得20
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
不配.应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
WN完成签到,获得积分10
10秒前
11秒前
11秒前
姜呱呱呱发布了新的文献求助10
12秒前
万能图书馆应助动人的ccc采纳,获得10
14秒前
joker完成签到 ,获得积分10
14秒前
桐桐应助zhengzhao采纳,获得10
15秒前
葫芦娃大铁锤完成签到 ,获得积分10
15秒前
fd163c完成签到,获得积分10
16秒前
学术大白完成签到 ,获得积分10
17秒前
doo完成签到 ,获得积分10
18秒前
干净的烧鹅完成签到,获得积分10
18秒前
aero完成签到 ,获得积分10
19秒前
煮饭吃Zz发布了新的文献求助10
19秒前
20秒前
糟糕的富应助花痴的易真采纳,获得10
21秒前
22秒前
初雪平寒完成签到,获得积分10
22秒前
动人的ccc完成签到,获得积分20
23秒前
lxj关闭了lxj文献求助
25秒前
石斑鱼完成签到,获得积分10
26秒前
动人的ccc发布了新的文献求助10
26秒前
29秒前
哈佛得不到的学生完成签到 ,获得积分10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159782
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889078
捐赠科研通 2469740
什么是DOI,文献DOI怎么找? 1315055
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012