A Dynamic Contribution Measurement and Incentive Mechanism for Energy-Efficient Federated Learning in 6G

激励 计算机科学 编配 斯塔克伯格竞赛 高效能源利用 方案(数学) 能源消耗 过程(计算) 知识管理 分布式计算 人工智能 工程类 操作系统 电气工程 数学分析 艺术 数理经济学 视觉艺术 经济 微观经济学 音乐剧 数学
作者
Peng Wang,Wenqiang Ma,Haibin Zhang,Wen Sun,Lexi Xu
标识
DOI:10.1109/icc45855.2022.9882278
摘要

With 5G being commercialized, researchers have turned attention toward the sixth-generation (6G) network with the vision of connecting intelligence in a green energy-efficient manner. Federated learning triggers an upsurge of green intelligent services such as resources orchestration of communication infrastructures, while preserving privacy and communication efficiency. However, designing effective incentives in federated learning is challenging due to the dynamic available clients and the correlation between clients' contributions during the learning process. In this paper, we propose a dynamic incentive and contribution mechanism to improve energy efficiency and training performance of federated learning. The proposed incentive based on Stackelberg game can timely adjust optimal energy consumption with changes in available clients during federated learning. Meanwhile, the contributions of clients in contribution management are formulated based on cooperative game to capture the correlation between tasks, which satisfies the availability, fairness and additivity. The simulation results show that the proposed scheme can significantly motivate high-performance clients to participate in federated learning, then improve the accuracy and energy efficiency of the federated learning model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的小蘑菇完成签到,获得积分10
1秒前
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
顺顺发布了新的文献求助10
1秒前
上官若男应助科研通管家采纳,获得30
1秒前
汉堡包应助科研通管家采纳,获得30
1秒前
1秒前
烟花应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
maox1aoxin应助科研通管家采纳,获得30
2秒前
无花果应助科研通管家采纳,获得10
3秒前
11完成签到,获得积分10
3秒前
3秒前
3秒前
时尚的书易给时尚的书易的求助进行了留言
3秒前
南北完成签到,获得积分10
4秒前
4秒前
4秒前
MADKAI发布了新的文献求助20
4秒前
xiaoli完成签到,获得积分10
5秒前
清浅完成签到,获得积分10
5秒前
赘婿应助深海soda采纳,获得10
5秒前
WJM完成签到,获得积分10
5秒前
小星星完成签到,获得积分10
5秒前
啵乐乐发布了新的文献求助10
5秒前
爆米花应助瘦瘦白昼采纳,获得10
5秒前
wintercyan发布了新的文献求助20
5秒前
大雁高飞出不胜寒完成签到,获得积分10
6秒前
PSCs发布了新的文献求助10
6秒前
QWJ完成签到,获得积分10
6秒前
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678