MAEF-Net: Multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography

计算机科学 人工智能 射血分数 分割 心室 心跳 特征(语言学) 模式识别(心理学) 心脏周期 计算机辅助诊断 Sørensen–骰子系数 图像分割 心脏病学 医学 心力衰竭 哲学 语言学 计算机安全
作者
Yan Zeng,Po‐Hsiang Tsui,Kunjing Pang,Guangyu Bin,Jiehui Li,Ke Lv,Xining Wu,Shuicai Wu,Zhuhuang Zhou
出处
期刊:Ultrasonics [Elsevier]
卷期号:127: 106855-106855 被引量:51
标识
DOI:10.1016/j.ultras.2022.106855
摘要

The segmentation of cardiac chambers and the quantification of clinical functional metrics in dynamic echocardiography are the keys to the clinical diagnosis of heart disease. Identifying the end-diastolic frames (EDFs) and end-systolic frames (ESFs) and manually segmenting the left ventricle in the echocardiographic cardiac cycle before obtaining the left ventricular ejection fraction (LVEF) is a time-consuming and tedious task for clinicians. In this work, we proposed a deep learning-based fully automated echocardiographic analysis method. We proposed a multi-attention efficient feature fusion network (MAEF-Net) to automatically segment the left ventricle. Then, EDFs and ESFs in all cardiac cycles were automatically detected to compute LVEF. The MAEF-Net method used a multi-attention mechanism to guide the network to capture heartbeat features effectively, while suppressing noise, and incorporated deep supervision mechanism and spatial pyramid feature fusion to enhance feature extraction capabilities. The proposed method was validated on the public EchoNet-Dynamic dataset (n = 1226). The Dice similarity coefficient (DSC) of the left ventricular segmentation reached (93.10 ± 2.22)%, and the mean absolute error (MAE) of cardiac phase detection was (2.36 ± 2.23) frames. The MAE for predicting LVEF was 6.29 %. The proposed method was also validated on a private clinical dataset (n = 22). The DSC of the left ventricular segmentation reached (92.81 ± 2.85)%, and the MAE of cardiac phase detection was (2.25 ± 2.27) frames. The MAE for predicting LVEF was 5.91 %, and the Pearson correlation coefficient r reached 0.96. The proposed method may be used as a new method for automatic left ventricular segmentation and quantitative analysis in two-dimensional echocardiography. Our code and trained models will be made available publicly at https://github.com/xiaojinmao-code/MAEF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
优美紫槐应助张航采纳,获得10
3秒前
yaomax完成签到 ,获得积分10
3秒前
姜圆发布了新的文献求助10
5秒前
嘻嘻哈哈发布了新的文献求助10
5秒前
鄢廷芮完成签到 ,获得积分10
5秒前
科研通AI6.1应助7777777采纳,获得10
6秒前
7秒前
8秒前
spc68应助读书的时候采纳,获得10
10秒前
10秒前
小李新人完成签到 ,获得积分0
11秒前
xci完成签到,获得积分10
11秒前
12秒前
背后的元芹完成签到,获得积分10
12秒前
wang完成签到,获得积分0
12秒前
13秒前
14秒前
14秒前
14秒前
Lyuhng+1完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助30
15秒前
11发布了新的文献求助10
16秒前
一木完成签到,获得积分10
16秒前
16秒前
CipherSage应助臭小子采纳,获得10
17秒前
充电宝应助背后的元芹采纳,获得10
17秒前
18秒前
科目三应助xci采纳,获得10
19秒前
充电宝应助陶宇采纳,获得10
19秒前
19秒前
个性的傲安完成签到,获得积分10
19秒前
Jianfeng发布了新的文献求助10
19秒前
benlaron发布了新的文献求助10
19秒前
20秒前
SKY完成签到,获得积分10
22秒前
ppppp完成签到 ,获得积分10
23秒前
Daisy完成签到 ,获得积分10
23秒前
23秒前
JamesPei应助阿棒采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841