MAEF-Net: Multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography

计算机科学 人工智能 射血分数 分割 心室 心跳 特征(语言学) 模式识别(心理学) 心脏周期 计算机辅助诊断 Sørensen–骰子系数 图像分割 心脏病学 医学 心力衰竭 哲学 语言学 计算机安全
作者
Yan Zeng,Po‐Hsiang Tsui,Kunjing Pang,Guangyu Bin,Jiehui Li,Ke Lü,Xining Wu,Shuicai Wu,Zhuhuang Zhou
出处
期刊:Ultrasonics [Elsevier]
卷期号:127: 106855-106855 被引量:18
标识
DOI:10.1016/j.ultras.2022.106855
摘要

The segmentation of cardiac chambers and the quantification of clinical functional metrics in dynamic echocardiography are the keys to the clinical diagnosis of heart disease. Identifying the end-diastolic frames (EDFs) and end-systolic frames (ESFs) and manually segmenting the left ventricle in the echocardiographic cardiac cycle before obtaining the left ventricular ejection fraction (LVEF) is a time-consuming and tedious task for clinicians. In this work, we proposed a deep learning-based fully automated echocardiographic analysis method. We proposed a multi-attention efficient feature fusion network (MAEF-Net) to automatically segment the left ventricle. Then, EDFs and ESFs in all cardiac cycles were automatically detected to compute LVEF. The MAEF-Net method used a multi-attention mechanism to guide the network to capture heartbeat features effectively, while suppressing noise, and incorporated deep supervision mechanism and spatial pyramid feature fusion to enhance feature extraction capabilities. The proposed method was validated on the public EchoNet-Dynamic dataset (n = 1226). The Dice similarity coefficient (DSC) of the left ventricular segmentation reached (93.10 ± 2.22)%, and the mean absolute error (MAE) of cardiac phase detection was (2.36 ± 2.23) frames. The MAE for predicting LVEF was 6.29 %. The proposed method was also validated on a private clinical dataset (n = 22). The DSC of the left ventricular segmentation reached (92.81 ± 2.85)%, and the MAE of cardiac phase detection was (2.25 ± 2.27) frames. The MAE for predicting LVEF was 5.91 %, and the Pearson correlation coefficient r reached 0.96. The proposed method may be used as a new method for automatic left ventricular segmentation and quantitative analysis in two-dimensional echocardiography. Our code and trained models will be made available publicly at https://github.com/xiaojinmao-code/MAEF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王晓曼发布了新的文献求助10
刚刚
刚刚
Echo发布了新的文献求助10
1秒前
2秒前
细草微风岸完成签到 ,获得积分10
5秒前
lit发布了新的文献求助30
5秒前
5秒前
5秒前
6秒前
annie发布了新的文献求助10
7秒前
yangjinru完成签到 ,获得积分10
8秒前
仁爱芷波发布了新的文献求助10
9秒前
小二郎应助夜柒七采纳,获得10
10秒前
852应助迟迟采纳,获得10
11秒前
11秒前
三新荞应助彬墩墩采纳,获得10
12秒前
王晓曼完成签到,获得积分10
15秒前
Kuma关注了科研通微信公众号
16秒前
飞儿随缘发布了新的文献求助10
16秒前
魏你大爷发布了新的文献求助10
17秒前
Yiy完成签到 ,获得积分0
17秒前
sinber完成签到 ,获得积分10
18秒前
善学以致用应助仁爱芷波采纳,获得10
18秒前
lucky应助cs采纳,获得10
21秒前
21秒前
调调单单发布了新的文献求助10
21秒前
21秒前
23秒前
湖里发布了新的文献求助10
23秒前
Haomee完成签到,获得积分10
24秒前
传奇3应助宇宙奇遇记采纳,获得10
26秒前
文艺书雪发布了新的文献求助10
26秒前
夜柒七发布了新的文献求助10
26秒前
29秒前
我是老大应助湖里采纳,获得10
31秒前
32秒前
asdfg123驳回了852应助
32秒前
单纯沛槐完成签到,获得积分10
32秒前
Echo完成签到,获得积分10
34秒前
34秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877020
关于积分的说明 8197467
捐赠科研通 2544342
什么是DOI,文献DOI怎么找? 1374310
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621738