Identifying cancer cachexia in patients without weight loss information: machine learning approaches to address a real-world challenge

恶病质 医学 减肥 癌症 队列 逻辑回归 内科学 肿瘤科 肥胖
作者
Liangyu Yin,Jiuwei Cui,Xin Lin,Na Li,Fan Yang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Mei Yang,Jiami Yu,Xiaojie Wang,Minghua Cong,Zengning Li,Min Weng,Qinghua Yao,Pingping Jia
出处
期刊:The American Journal of Clinical Nutrition [Oxford University Press]
卷期号:116 (5): 1229-1239 被引量:16
标识
DOI:10.1093/ajcn/nqac251
摘要

Diagnosing cancer cachexia relies extensively on patient-reported historic weight, and failure to accurately recall this information can lead to severe underestimation of cancer cachexia. The present study aimed to develop inexpensive tools to facilitate the identification of cancer cachexia in patients without weight loss information. This multicenter cohort study included 12,774 patients with cancer. Cachexia was retrospectively diagnosed using Fearon et al.'s framework. Baseline clinical features, excluding weight loss, were modeled to mimic a situation where the patient is unable to recall their weight history. Multiple machine learning (ML) models were trained using 75% of the study cohort to predict cancer cachexia, with the remaining 25% of the cohort used to assess model performance. The study enrolled 6730 males and 6044 females (median age = 57.5 y). Cachexia was diagnosed in 5261 (41.2%) patients and most diagnoses were made based on the weight loss criterion. A 15-variable logistic regression (LR) model mainly comprising cancer types, gastrointestinal symptoms, tumor stage, and serum biochemistry indexes was selected among the various ML models. The LR model showed good performance for predicting cachexia in the validation data (AUC = 0.763; 95% CI: 0.747, 0.780). The calibration curve of the model demonstrated good agreement between predictions and actual observations (accuracy = 0.714, κ = 0.396, sensitivity = 0.580, specificity = 0.808, positive predictive value = 0.679, negative predictive value = 0.733). Subgroup analyses showed that the model was feasible in patients with different cancer types. The model was deployed as an online calculator and a nomogram, and was exported as predictive model markup language to permit flexible, individualized risk calculation. We developed an ML model that can facilitate the identification of cancer cachexia in patients without weight loss information, which might improve decision-making and lead to the development of novel management strategies in cancer care. This trial was registered at https://www.chictr.org.cn as ChiCTR1800020329.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
even发布了新的文献求助10
1秒前
1秒前
小众完成签到,获得积分10
1秒前
小李完成签到,获得积分10
1秒前
飞槐发布了新的文献求助10
2秒前
小小雪发布了新的文献求助10
2秒前
2秒前
彭于晏应助主手的麻衣采纳,获得10
3秒前
CodeCraft应助喜悦绿旋采纳,获得10
3秒前
chixueqi发布了新的文献求助10
3秒前
kulo发布了新的文献求助10
3秒前
SciGPT应助ymt采纳,获得10
4秒前
skyangar发布了新的文献求助10
4秒前
可爱的函函应助福路采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
默默的芙完成签到,获得积分10
5秒前
石头发布了新的文献求助10
5秒前
所所应助lmy采纳,获得10
5秒前
开朗冬灵完成签到 ,获得积分20
6秒前
宇月幸成发布了新的文献求助10
6秒前
昼夜本色发布了新的文献求助10
6秒前
majingwei发布了新的文献求助10
6秒前
6秒前
7秒前
xixi发布了新的文献求助10
8秒前
DouBo完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
DouBo发布了新的文献求助10
10秒前
10秒前
小蘑菇应助飞槐采纳,获得10
10秒前
guoguo完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851