Identifying cancer cachexia in patients without weight loss information: machine learning approaches to address a real-world challenge

恶病质 医学 减肥 癌症 队列 逻辑回归 内科学 肿瘤科 肥胖
作者
Liangyu Yin,Jiuwei Cui,Xin Lin,Na Li,Fan Yang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Mei Yang,Jiami Yu,Xiaojie Wang,Minghua Cong,Zengning Li,Min Weng,Qinghua Yao,Pingping Jia
出处
期刊:The American Journal of Clinical Nutrition [Oxford University Press]
卷期号:116 (5): 1229-1239 被引量:16
标识
DOI:10.1093/ajcn/nqac251
摘要

Diagnosing cancer cachexia relies extensively on patient-reported historic weight, and failure to accurately recall this information can lead to severe underestimation of cancer cachexia. The present study aimed to develop inexpensive tools to facilitate the identification of cancer cachexia in patients without weight loss information. This multicenter cohort study included 12,774 patients with cancer. Cachexia was retrospectively diagnosed using Fearon et al.'s framework. Baseline clinical features, excluding weight loss, were modeled to mimic a situation where the patient is unable to recall their weight history. Multiple machine learning (ML) models were trained using 75% of the study cohort to predict cancer cachexia, with the remaining 25% of the cohort used to assess model performance. The study enrolled 6730 males and 6044 females (median age = 57.5 y). Cachexia was diagnosed in 5261 (41.2%) patients and most diagnoses were made based on the weight loss criterion. A 15-variable logistic regression (LR) model mainly comprising cancer types, gastrointestinal symptoms, tumor stage, and serum biochemistry indexes was selected among the various ML models. The LR model showed good performance for predicting cachexia in the validation data (AUC = 0.763; 95% CI: 0.747, 0.780). The calibration curve of the model demonstrated good agreement between predictions and actual observations (accuracy = 0.714, κ = 0.396, sensitivity = 0.580, specificity = 0.808, positive predictive value = 0.679, negative predictive value = 0.733). Subgroup analyses showed that the model was feasible in patients with different cancer types. The model was deployed as an online calculator and a nomogram, and was exported as predictive model markup language to permit flexible, individualized risk calculation. We developed an ML model that can facilitate the identification of cancer cachexia in patients without weight loss information, which might improve decision-making and lead to the development of novel management strategies in cancer care. This trial was registered at https://www.chictr.org.cn as ChiCTR1800020329.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxffxf发布了新的文献求助10
刚刚
打打应助杨洋采纳,获得10
1秒前
悲伤香菇酱完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
2秒前
浮游应助着急的凌青采纳,获得10
3秒前
Percy发布了新的文献求助30
3秒前
哈哈哈发布了新的文献求助10
3秒前
叶赛文完成签到,获得积分10
4秒前
SYX完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
8秒前
10秒前
12秒前
lsx发布了新的文献求助10
12秒前
dili发布了新的文献求助20
12秒前
12秒前
Akim应助富贵李采纳,获得10
12秒前
慕青应助bobo采纳,获得10
13秒前
鬼豆完成签到,获得积分10
13秒前
13秒前
老姚发布了新的文献求助10
14秒前
14秒前
我要向阳而生完成签到 ,获得积分10
14秒前
111完成签到,获得积分10
14秒前
15秒前
852应助乐观笑南采纳,获得10
15秒前
16秒前
16秒前
16秒前
浮游应助Percy采纳,获得10
16秒前
sswbzh应助xxsw采纳,获得200
17秒前
17秒前
lls发布了新的文献求助10
17秒前
wf0806发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
上官若男应助sqq采纳,获得10
19秒前
wangxw完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145