Identifying cancer cachexia in patients without weight loss information: machine learning approaches to address a real-world challenge

恶病质 医学 减肥 癌症 队列 逻辑回归 内科学 肿瘤科 肥胖
作者
Liangyu Yin,Jiuwei Cui,Xin Lin,Na Li,Jing Wang,Shouxin Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Mei Yang,Jiami Yu,Xiaojie Wang,Minghua Cong,Zengning Li,Min Weng,Qinghua Yao,Pingping Jia,Zengqing Guo,Wei Li,Chunhua Song,Hanping Shi,Hongxia Xu
出处
期刊:The American Journal of Clinical Nutrition [Elsevier BV]
卷期号:116 (5): 1229-1239 被引量:12
标识
DOI:10.1093/ajcn/nqac251
摘要

Diagnosing cancer cachexia relies extensively on patient-reported historic weight, and failure to accurately recall this information can lead to severe underestimation of cancer cachexia. The present study aimed to develop inexpensive tools to facilitate the identification of cancer cachexia in patients without weight loss information. This multicenter cohort study included 12,774 patients with cancer. Cachexia was retrospectively diagnosed using Fearon et al.'s framework. Baseline clinical features, excluding weight loss, were modeled to mimic a situation where the patient is unable to recall their weight history. Multiple machine learning (ML) models were trained using 75% of the study cohort to predict cancer cachexia, with the remaining 25% of the cohort used to assess model performance. The study enrolled 6730 males and 6044 females (median age = 57.5 y). Cachexia was diagnosed in 5261 (41.2%) patients and most diagnoses were made based on the weight loss criterion. A 15-variable logistic regression (LR) model mainly comprising cancer types, gastrointestinal symptoms, tumor stage, and serum biochemistry indexes was selected among the various ML models. The LR model showed good performance for predicting cachexia in the validation data (AUC = 0.763; 95% CI: 0.747, 0.780). The calibration curve of the model demonstrated good agreement between predictions and actual observations (accuracy = 0.714, κ = 0.396, sensitivity = 0.580, specificity = 0.808, positive predictive value = 0.679, negative predictive value = 0.733). Subgroup analyses showed that the model was feasible in patients with different cancer types. The model was deployed as an online calculator and a nomogram, and was exported as predictive model markup language to permit flexible, individualized risk calculation. We developed an ML model that can facilitate the identification of cancer cachexia in patients without weight loss information, which might improve decision-making and lead to the development of novel management strategies in cancer care. This trial was registered at https://www.chictr.org.cn as ChiCTR1800020329.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YuchaoJia发布了新的文献求助10
3秒前
杨沛儒发布了新的文献求助10
3秒前
小铃铛完成签到,获得积分10
3秒前
王九八发布了新的文献求助10
4秒前
彭于晏应助kento采纳,获得100
5秒前
大脑袋应助Lucas采纳,获得30
5秒前
5秒前
5秒前
李三金嘻嘻完成签到,获得积分10
6秒前
reedleaf完成签到,获得积分10
6秒前
6秒前
7秒前
123发布了新的文献求助10
7秒前
7秒前
慕青应助杨沛儒采纳,获得10
8秒前
乐乐应助武六七采纳,获得10
8秒前
Admsen发布了新的文献求助10
8秒前
9秒前
香蕉觅云应助z11采纳,获得10
9秒前
啦啦完成签到 ,获得积分10
10秒前
10秒前
黑黑发布了新的文献求助10
10秒前
李爱国应助暮然采纳,获得10
10秒前
袁睿韬应助李茶嘚采纳,获得10
11秒前
11秒前
Chen发布了新的文献求助10
11秒前
12秒前
12秒前
Junehe完成签到,获得积分10
12秒前
xiaojingbao发布了新的文献求助10
13秒前
疚祠发布了新的文献求助10
13秒前
Hello应助猪猪hero采纳,获得10
13秒前
sbc完成签到,获得积分20
14秒前
安详三问发布了新的文献求助10
15秒前
小猪跳水发布了新的文献求助10
15秒前
纯真保温杯完成签到 ,获得积分10
17秒前
jacs111发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352