Identifying cancer cachexia in patients without weight loss information: machine learning approaches to address a real-world challenge

恶病质 医学 减肥 癌症 队列 逻辑回归 内科学 肿瘤科 肥胖
作者
Liangyu Yin,Jiuwei Cui,Xin Lin,Na Li,Jing Wang,Shouxin Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Mei Yang,Jiami Yu,Xiaojie Wang,Minghua Cong,Zengning Li,Min Weng,Qinghua Yao,Pingping Jia,Zengqing Guo,Wei Li,Chunhua Song,Hanping Shi,Hongxia Xu
出处
期刊:The American Journal of Clinical Nutrition [Oxford University Press]
卷期号:116 (5): 1229-1239 被引量:12
标识
DOI:10.1093/ajcn/nqac251
摘要

Diagnosing cancer cachexia relies extensively on patient-reported historic weight, and failure to accurately recall this information can lead to severe underestimation of cancer cachexia. The present study aimed to develop inexpensive tools to facilitate the identification of cancer cachexia in patients without weight loss information. This multicenter cohort study included 12,774 patients with cancer. Cachexia was retrospectively diagnosed using Fearon et al.'s framework. Baseline clinical features, excluding weight loss, were modeled to mimic a situation where the patient is unable to recall their weight history. Multiple machine learning (ML) models were trained using 75% of the study cohort to predict cancer cachexia, with the remaining 25% of the cohort used to assess model performance. The study enrolled 6730 males and 6044 females (median age = 57.5 y). Cachexia was diagnosed in 5261 (41.2%) patients and most diagnoses were made based on the weight loss criterion. A 15-variable logistic regression (LR) model mainly comprising cancer types, gastrointestinal symptoms, tumor stage, and serum biochemistry indexes was selected among the various ML models. The LR model showed good performance for predicting cachexia in the validation data (AUC = 0.763; 95% CI: 0.747, 0.780). The calibration curve of the model demonstrated good agreement between predictions and actual observations (accuracy = 0.714, κ = 0.396, sensitivity = 0.580, specificity = 0.808, positive predictive value = 0.679, negative predictive value = 0.733). Subgroup analyses showed that the model was feasible in patients with different cancer types. The model was deployed as an online calculator and a nomogram, and was exported as predictive model markup language to permit flexible, individualized risk calculation. We developed an ML model that can facilitate the identification of cancer cachexia in patients without weight loss information, which might improve decision-making and lead to the development of novel management strategies in cancer care. This trial was registered at https://www.chictr.org.cn as ChiCTR1800020329.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大灰完成签到,获得积分20
1秒前
小新同学完成签到,获得积分10
1秒前
斯文败类应助zz采纳,获得10
2秒前
ColinWine发布了新的文献求助10
3秒前
4秒前
liuxiaoying发布了新的文献求助10
4秒前
汉堡包应助LCct采纳,获得10
5秒前
萧水白应助囜囜采纳,获得10
6秒前
7秒前
眼里有光的阿墨完成签到 ,获得积分10
7秒前
子车茗应助凌无招采纳,获得20
8秒前
木子加y发布了新的文献求助10
8秒前
芒果发布了新的文献求助10
9秒前
10秒前
zhanglh应助CSUST科研一哥采纳,获得10
10秒前
cccyyy完成签到,获得积分10
11秒前
Maksim完成签到,获得积分10
11秒前
東東发布了新的文献求助30
13秒前
14秒前
14秒前
14秒前
科目三应助Wenpandaen采纳,获得10
14秒前
16秒前
Billy应助55555采纳,获得30
16秒前
17秒前
领导范儿应助FayWang采纳,获得10
18秒前
loong发布了新的文献求助50
18秒前
19秒前
光明磊落发布了新的文献求助10
19秒前
hangjias完成签到 ,获得积分10
21秒前
乔治完成签到,获得积分10
22秒前
sjbai完成签到,获得积分20
23秒前
skyler发布了新的文献求助30
23秒前
23秒前
蓝色条纹衫完成签到 ,获得积分10
23秒前
Andrew发布了新的文献求助10
23秒前
布丁发布了新的文献求助30
24秒前
25秒前
26秒前
大模型应助光明磊落采纳,获得10
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3252333
求助须知:如何正确求助?哪些是违规求助? 2895063
关于积分的说明 8285118
捐赠科研通 2563748
什么是DOI,文献DOI怎么找? 1391921
科研通“疑难数据库(出版商)”最低求助积分说明 651959
邀请新用户注册赠送积分活动 629150