Identifying cancer cachexia in patients without weight loss information: machine learning approaches to address a real-world challenge

恶病质 医学 减肥 癌症 队列 逻辑回归 内科学 肿瘤科 肥胖
作者
Liangyu Yin,Jiuwei Cui,Xin Lin,Na Li,Fan Yang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Mei Yang,Jiami Yu,Xiaojie Wang,Minghua Cong,Zengning Li,Min Weng,Qinghua Yao,Pingping Jia
出处
期刊:The American Journal of Clinical Nutrition [Oxford University Press]
卷期号:116 (5): 1229-1239 被引量:16
标识
DOI:10.1093/ajcn/nqac251
摘要

Diagnosing cancer cachexia relies extensively on patient-reported historic weight, and failure to accurately recall this information can lead to severe underestimation of cancer cachexia. The present study aimed to develop inexpensive tools to facilitate the identification of cancer cachexia in patients without weight loss information. This multicenter cohort study included 12,774 patients with cancer. Cachexia was retrospectively diagnosed using Fearon et al.'s framework. Baseline clinical features, excluding weight loss, were modeled to mimic a situation where the patient is unable to recall their weight history. Multiple machine learning (ML) models were trained using 75% of the study cohort to predict cancer cachexia, with the remaining 25% of the cohort used to assess model performance. The study enrolled 6730 males and 6044 females (median age = 57.5 y). Cachexia was diagnosed in 5261 (41.2%) patients and most diagnoses were made based on the weight loss criterion. A 15-variable logistic regression (LR) model mainly comprising cancer types, gastrointestinal symptoms, tumor stage, and serum biochemistry indexes was selected among the various ML models. The LR model showed good performance for predicting cachexia in the validation data (AUC = 0.763; 95% CI: 0.747, 0.780). The calibration curve of the model demonstrated good agreement between predictions and actual observations (accuracy = 0.714, κ = 0.396, sensitivity = 0.580, specificity = 0.808, positive predictive value = 0.679, negative predictive value = 0.733). Subgroup analyses showed that the model was feasible in patients with different cancer types. The model was deployed as an online calculator and a nomogram, and was exported as predictive model markup language to permit flexible, individualized risk calculation. We developed an ML model that can facilitate the identification of cancer cachexia in patients without weight loss information, which might improve decision-making and lead to the development of novel management strategies in cancer care. This trial was registered at https://www.chictr.org.cn as ChiCTR1800020329.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000完成签到,获得积分10
1秒前
丘比特应助tidongzhiwu采纳,获得10
1秒前
毕业比耶完成签到,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
鲤鱼水池发布了新的文献求助10
2秒前
2秒前
ttt完成签到,获得积分10
2秒前
2秒前
Hello应助卡卡卡卡卡卡采纳,获得30
3秒前
尊敬秋双完成签到,获得积分10
3秒前
乔木木发布了新的文献求助10
3秒前
3秒前
ruigfkl发布了新的文献求助10
4秒前
共享精神应助陈康采纳,获得10
4秒前
gj2221423发布了新的文献求助10
4秒前
4秒前
胖墩墩完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
Misty发布了新的文献求助10
5秒前
Joel完成签到,获得积分10
5秒前
包容溪灵完成签到,获得积分10
5秒前
我是老大应助细心的语蓉采纳,获得10
6秒前
海哥发布了新的文献求助30
6秒前
6秒前
gong9456完成签到,获得积分10
6秒前
fancyiii完成签到,获得积分10
7秒前
7秒前
Martina完成签到,获得积分10
7秒前
小何发布了新的文献求助10
7秒前
fjkssadjk发布了新的文献求助10
7秒前
鲤鱼水池完成签到,获得积分10
7秒前
guozizi发布了新的文献求助10
8秒前
杨安安完成签到,获得积分10
8秒前
了哟发布了新的文献求助10
8秒前
Joel发布了新的文献求助30
8秒前
Garden发布了新的文献求助10
9秒前
9秒前
深情安青应助gj2221423采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710787
求助须知:如何正确求助?哪些是违规求助? 5200765
关于积分的说明 15262070
捐赠科研通 4863340
什么是DOI,文献DOI怎么找? 2610590
邀请新用户注册赠送积分活动 1560857
关于科研通互助平台的介绍 1518463