Identifying cancer cachexia in patients without weight loss information: machine learning approaches to address a real-world challenge

恶病质 医学 减肥 癌症 队列 逻辑回归 内科学 肿瘤科 肥胖
作者
Liangyu Yin,Jiuwei Cui,Xin Lin,Na Li,Fan Yang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Mei Yang,Jiami Yu,Xiaojie Wang,Minghua Cong,Zengning Li,Min Weng,Qinghua Yao,Pingping Jia
出处
期刊:The American Journal of Clinical Nutrition [Oxford University Press]
卷期号:116 (5): 1229-1239 被引量:16
标识
DOI:10.1093/ajcn/nqac251
摘要

Diagnosing cancer cachexia relies extensively on patient-reported historic weight, and failure to accurately recall this information can lead to severe underestimation of cancer cachexia. The present study aimed to develop inexpensive tools to facilitate the identification of cancer cachexia in patients without weight loss information. This multicenter cohort study included 12,774 patients with cancer. Cachexia was retrospectively diagnosed using Fearon et al.'s framework. Baseline clinical features, excluding weight loss, were modeled to mimic a situation where the patient is unable to recall their weight history. Multiple machine learning (ML) models were trained using 75% of the study cohort to predict cancer cachexia, with the remaining 25% of the cohort used to assess model performance. The study enrolled 6730 males and 6044 females (median age = 57.5 y). Cachexia was diagnosed in 5261 (41.2%) patients and most diagnoses were made based on the weight loss criterion. A 15-variable logistic regression (LR) model mainly comprising cancer types, gastrointestinal symptoms, tumor stage, and serum biochemistry indexes was selected among the various ML models. The LR model showed good performance for predicting cachexia in the validation data (AUC = 0.763; 95% CI: 0.747, 0.780). The calibration curve of the model demonstrated good agreement between predictions and actual observations (accuracy = 0.714, κ = 0.396, sensitivity = 0.580, specificity = 0.808, positive predictive value = 0.679, negative predictive value = 0.733). Subgroup analyses showed that the model was feasible in patients with different cancer types. The model was deployed as an online calculator and a nomogram, and was exported as predictive model markup language to permit flexible, individualized risk calculation. We developed an ML model that can facilitate the identification of cancer cachexia in patients without weight loss information, which might improve decision-making and lead to the development of novel management strategies in cancer care. This trial was registered at https://www.chictr.org.cn as ChiCTR1800020329.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WHITE发布了新的文献求助10
刚刚
汉堡包应助wushengdeyu采纳,获得10
1秒前
Jade完成签到,获得积分10
1秒前
TFboy发布了新的文献求助10
1秒前
李爱国应助缓慢的灵枫采纳,获得10
1秒前
1秒前
陈红发布了新的文献求助10
1秒前
嘻嘻发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
wenhao完成签到,获得积分10
4秒前
Kyrie完成签到,获得积分20
4秒前
712完成签到,获得积分10
4秒前
sophia1211发布了新的文献求助10
4秒前
4秒前
秀丽惋清完成签到 ,获得积分10
5秒前
614606480@qq.com完成签到,获得积分10
5秒前
Mmmmyr完成签到,获得积分10
5秒前
轻松沛萍发布了新的文献求助10
5秒前
5秒前
HW发布了新的文献求助10
6秒前
稚生w完成签到,获得积分10
6秒前
文学痞完成签到,获得积分10
6秒前
TFboy完成签到,获得积分10
6秒前
6秒前
土豪的荔枝完成签到,获得积分10
6秒前
大个应助D&L采纳,获得10
7秒前
连秋发布了新的文献求助10
7秒前
7秒前
7秒前
科研通AI6应助李男孩采纳,获得10
7秒前
Ting发布了新的文献求助10
8秒前
超帅的思山完成签到,获得积分10
8秒前
麦麦发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524260
求助须知:如何正确求助?哪些是违规求助? 4614804
关于积分的说明 14544904
捐赠科研通 4552714
什么是DOI,文献DOI怎么找? 2494932
邀请新用户注册赠送积分活动 1475626
关于科研通互助平台的介绍 1447330