已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying cancer cachexia in patients without weight loss information: machine learning approaches to address a real-world challenge

恶病质 医学 减肥 癌症 队列 逻辑回归 内科学 肿瘤科 肥胖
作者
Liangyu Yin,Jiuwei Cui,Xin Lin,Na Li,Fan Yang,Ling Zhang,Jie Liu,Feifei Chong,Chang Wang,Tingting Liang,Xiangliang Liu,Li Deng,Mei Yang,Jiami Yu,Xiaojie Wang,Minghua Cong,Zengning Li,Min Weng,Qinghua Yao,Pingping Jia
出处
期刊:The American Journal of Clinical Nutrition [Oxford University Press]
卷期号:116 (5): 1229-1239 被引量:16
标识
DOI:10.1093/ajcn/nqac251
摘要

Diagnosing cancer cachexia relies extensively on patient-reported historic weight, and failure to accurately recall this information can lead to severe underestimation of cancer cachexia. The present study aimed to develop inexpensive tools to facilitate the identification of cancer cachexia in patients without weight loss information. This multicenter cohort study included 12,774 patients with cancer. Cachexia was retrospectively diagnosed using Fearon et al.'s framework. Baseline clinical features, excluding weight loss, were modeled to mimic a situation where the patient is unable to recall their weight history. Multiple machine learning (ML) models were trained using 75% of the study cohort to predict cancer cachexia, with the remaining 25% of the cohort used to assess model performance. The study enrolled 6730 males and 6044 females (median age = 57.5 y). Cachexia was diagnosed in 5261 (41.2%) patients and most diagnoses were made based on the weight loss criterion. A 15-variable logistic regression (LR) model mainly comprising cancer types, gastrointestinal symptoms, tumor stage, and serum biochemistry indexes was selected among the various ML models. The LR model showed good performance for predicting cachexia in the validation data (AUC = 0.763; 95% CI: 0.747, 0.780). The calibration curve of the model demonstrated good agreement between predictions and actual observations (accuracy = 0.714, κ = 0.396, sensitivity = 0.580, specificity = 0.808, positive predictive value = 0.679, negative predictive value = 0.733). Subgroup analyses showed that the model was feasible in patients with different cancer types. The model was deployed as an online calculator and a nomogram, and was exported as predictive model markup language to permit flexible, individualized risk calculation. We developed an ML model that can facilitate the identification of cancer cachexia in patients without weight loss information, which might improve decision-making and lead to the development of novel management strategies in cancer care. This trial was registered at https://www.chictr.org.cn as ChiCTR1800020329.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Wwwwww发布了新的文献求助10
1秒前
woosa完成签到 ,获得积分10
1秒前
sasa完成签到 ,获得积分10
2秒前
快乐的寄容完成签到 ,获得积分10
2秒前
小刘哥儿发布了新的文献求助10
2秒前
柠檬泡芙发布了新的文献求助10
3秒前
Raven应助qwq采纳,获得10
3秒前
丽君发布了新的文献求助10
6秒前
zly完成签到,获得积分10
6秒前
7秒前
cl完成签到,获得积分10
8秒前
敌敌畏完成签到,获得积分10
9秒前
nzlatto完成签到 ,获得积分10
10秒前
11秒前
周子文发布了新的文献求助10
15秒前
lqy完成签到,获得积分10
15秒前
15秒前
16秒前
Criminology34举报暖阳求助涉嫌违规
16秒前
17秒前
17秒前
廖嘉俊发布了新的文献求助10
18秒前
英吉利25发布了新的文献求助10
18秒前
18秒前
Hairee发布了新的文献求助10
20秒前
20秒前
yu202408应助bubble采纳,获得30
21秒前
香蕉觅云应助无私的梦凡采纳,获得10
22秒前
情怀应助味精采纳,获得10
23秒前
lqy发布了新的文献求助10
23秒前
nenoaowu发布了新的文献求助10
23秒前
23秒前
25秒前
25秒前
bkagyin应助布鞋老师采纳,获得10
27秒前
28秒前
ghn123456789完成签到,获得积分10
29秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312441
求助须知:如何正确求助?哪些是违规求助? 4456140
关于积分的说明 13865543
捐赠科研通 4344617
什么是DOI,文献DOI怎么找? 2385967
邀请新用户注册赠送积分活动 1380304
关于科研通互助平台的介绍 1348703