Dual gas sensor with innovative signal analysis based on neural network

分离器(采油) 人工神经网络 甲烷 一氧化碳 干扰(通信) 谱线 自编码 生物系统 计算机科学 化学 分析化学(期刊) 人工智能 物理 电信 色谱法 生物化学 生物 热力学 频道(广播) 催化作用 有机化学 天文
作者
Jiachen Sun,Jun Chang,Yubin Wei,Zhifeng Zhang,Shan Lin,Fupeng Wang,Qinduan Zhang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:373: 132697-132697 被引量:28
标识
DOI:10.1016/j.snb.2022.132697
摘要

Carbon monoxide and methane dual gas sensor with low system complexity and high stability is proposed in this study. A neural separator based on deep learning is developed to solve the cross-interference problem from the ultra-high spectral overlap between CO and CH 4 molecules. A large amount of simulated overlapping spectra of different concentrations CO and CH 4 are used to construct, train, tune and test the neural separator, instead of collecting data from onerous experiments. The linear fitting is performed between the predicted concentrations and preset concentrations of CH 4 and CO, determination coefficients of R 2 = 0.99960 and R 2 = 0.99301 are achieved respectively which proves the accuracy of the dual gas sensor is robust and greatly enhanced by the neural separator. In addition, the minimum detection limits of 120.86 ppm (CH 4 ) and 0.5 ppm (CO) are achieved in real-time simultaneous detection of CO and CH 4 overlapping environment. This is a successful attempt to apply deep learning method to tunable diode laser absorption spectroscopy (TDLAS) gas sensors to solve the problem of spectral cross-interference, which provides an alternative direction for the realization of simultaneous measurement of multi-component gases. • The dual gas sensor based on neural separator is developed. • The cross-interference problem with the ultra-high spectral overlap is solved. • The minimum detection limits of 120.86 ppm (CH 4 ) and 0.5 ppm (CO) are achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoliu完成签到,获得积分10
刚刚
刚刚
1秒前
dglyl发布了新的文献求助10
1秒前
科研通AI6应助lc采纳,获得10
2秒前
3秒前
自觉的丹珍完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
崽崽发布了新的文献求助10
6秒前
无花果应助背后的广山采纳,获得10
6秒前
共享精神应助小白采纳,获得10
6秒前
6秒前
ZL完成签到,获得积分10
7秒前
淡然冬灵发布了新的文献求助10
7秒前
营长完成签到 ,获得积分10
7秒前
7秒前
7秒前
diguohu发布了新的文献求助10
8秒前
10秒前
red发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
12秒前
失眠采白完成签到,获得积分10
12秒前
Jocelyn完成签到,获得积分10
12秒前
13秒前
pkouji发布了新的文献求助10
13秒前
个性的紫菜应助彩色青亦采纳,获得10
13秒前
lsq完成签到 ,获得积分10
13秒前
田様应助草拟大坝采纳,获得10
14秒前
老李发布了新的文献求助10
15秒前
16秒前
在水一方应助包容代芹采纳,获得10
16秒前
17秒前
南川石完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858