已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generalizability and Bias in a Deep Learning Pediatric Bone Age Prediction Model Using Hand Radiographs

概化理论 医学 骨龄 射线照相术 方差分析 考试(生物学) 统计 外科 内科学 数学 生物 古生物学
作者
Elham Beheshtian,Kristin Putman,Samantha M. Santomartino,Vishwa S. Parekh,Paul H. Yi
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (2) 被引量:24
标识
DOI:10.1148/radiol.220505
摘要

Background Although deep learning (DL) models have demonstrated expert-level ability for pediatric bone age prediction, they have shown poor generalizability and bias in other use cases. Purpose To quantify generalizability and bias in a bone age DL model measured by performance on external versus internal test sets and performance differences between different demographic groups, respectively. Materials and Methods The winning DL model of the 2017 RSNA Pediatric Bone Age Challenge was retrospectively evaluated and trained on 12 611 pediatric hand radiographs from two U.S. hospitals. The DL model was tested from September 2021 to December 2021 on an internal validation set and an external test set of pediatric hand radiographs with diverse demographic representation. Images reporting ground-truth bone age were included for study. Mean absolute difference (MAD) between ground-truth bone age and the model prediction bone age was calculated for each set. Generalizability was evaluated by comparing MAD between internal and external evaluation sets with use of t tests. Bias was evaluated by comparing MAD and clinically significant error rate (rate of errors changing the clinical diagnosis) between demographic groups with use of t tests or analysis of variance and χ2 tests, respectively (statistically significant difference defined as P < .05). Results The internal validation set had images from 1425 individuals (773 boys), and the external test set had images from 1202 individuals (mean age, 133 months ± 60 [SD]; 614 boys). The bone age model generalized well to the external test set, with no difference in MAD (6.8 months in the validation set vs 6.9 months in the external set; P = .64). Model predictions would have led to clinically significant errors in 194 of 1202 images (16%) in the external test set. The MAD was greater for girls than boys in the internal validation set (P = .01) and in the subcategories of age and Tanner stage in the external test set (P < .001 for both). Conclusion A deep learning (DL) bone age model generalized well to an external test set, although clinically significant sex-, age-, and sexual maturity-based biases in DL bone age were identified. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Larson in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻风完成签到,获得积分10
4秒前
HZHZHZ完成签到 ,获得积分10
5秒前
百里丹珍发布了新的文献求助10
7秒前
szf完成签到,获得积分10
8秒前
11秒前
在水一方应助77采纳,获得10
11秒前
12秒前
lxf_123完成签到,获得积分10
12秒前
shanney820完成签到,获得积分10
13秒前
Cecilia发布了新的文献求助10
17秒前
Lucas应助szf采纳,获得10
17秒前
柔弱凡松完成签到 ,获得积分10
17秒前
热心访风完成签到,获得积分10
18秒前
陈一应助kytlnj采纳,获得10
18秒前
hxd发布了新的文献求助10
18秒前
胡HML完成签到,获得积分20
19秒前
20秒前
20秒前
Nemo完成签到,获得积分10
22秒前
Jasper应助学习使人头大采纳,获得10
23秒前
852应助LUUUUU采纳,获得10
24秒前
24秒前
喜悦灵凡完成签到,获得积分10
26秒前
gstaihn发布了新的文献求助10
26秒前
27秒前
BEST完成签到 ,获得积分10
31秒前
百里丹珍发布了新的文献求助10
32秒前
可可不西锂完成签到 ,获得积分10
38秒前
39秒前
gstaihn完成签到,获得积分10
40秒前
闪闪火车完成签到 ,获得积分10
41秒前
48秒前
49秒前
fangzhang发布了新的文献求助10
50秒前
桐桐应助云雀叫了一整天采纳,获得10
50秒前
重要手机发布了新的文献求助30
51秒前
54秒前
55秒前
56秒前
bkagyin应助危言丶采纳,获得10
56秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463462
求助须知:如何正确求助?哪些是违规求助? 3056820
关于积分的说明 9054195
捐赠科研通 2746720
什么是DOI,文献DOI怎么找? 1507036
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695883