Additively manufactured high-performance AZ91D magnesium alloys with excellent strength and ductility via nanoparticles reinforcement

材料科学 极限抗拉强度 微观结构 延展性(地球科学) 复合材料 材料的强化机理 成核 多孔性 冶金 蠕动 有机化学 化学
作者
Xinzhi Li,Xuewei Fang,Xiao Jiang,Yusong Duan,Yan Li,Hongkai Zhang,Xiaopeng Li,Ke Huang
出处
期刊:Additive manufacturing [Elsevier]
卷期号:69: 103550-103550 被引量:21
标识
DOI:10.1016/j.addma.2023.103550
摘要

High-performance lightweight magnesium matrix composites (MMCs) play an important role in reducing CO2 emissions in the context of carbon neutrality. In order to promote the widespread applications of MMCs, academic research on the design and fabrication of MMCs has increased dramatically over the past decade. However, it is extremely challenging to prepare MMCs with conventional techniques. In this study, nearly-dense nanoparticles modified AZ91D composites containing 2 wt. % nano-TiCN were manufactured by laser powder bed fusion (L-PBF) technology. The influence of nano-TiCN on the L-PBF processability, microstructure evolution, tensile properties, and underlying mechanisms of TiCN/AZ91D composites were systematically investigated. Results demonstrate that a suitable amount of nano-TiCN introduced to AZ91D can improve densification, restrict growth and refine the size of α-Mg and β-Al12Mg17, and introduce more crystallographic defects. Consequently, the as-deposited TiCN/AZ91D composites exhibit excellent strength without compromising ductility (ultimate tensile strength of ∼361 MPa and elongation up to ∼8.9 %), which are far superior to those of most previously reported L-PBFed Mg alloys and MMCs. The underlying mechanisms for strength enhancement are mainly ascribed to the decreased volumetric porosity, grain boundary strengthening through the refined grain, dislocation strengthening due to local mismatch stress, as well as Orowan strengthening via intragranular nano-TiCN. The excellent ductility is mainly attributed to delayed void nucleation by decreased defects, grain refinement, homogenous and refined β-Al12Mg17, and improved dislocation plasticity by well-dispersed nano-TiCN. This study thus sheds new light on fabricating high-performance MMCs with complex geometry by L-PBF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
大模型应助Kannan采纳,获得10
4秒前
5秒前
5秒前
7秒前
追风hyzhang完成签到,获得积分10
7秒前
7秒前
q_q_l发布了新的文献求助10
8秒前
wxz发布了新的文献求助10
9秒前
luoluo发布了新的文献求助10
9秒前
这就去学习完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
落后成仁完成签到,获得积分20
10秒前
小鬼完成签到,获得积分10
11秒前
XEN发布了新的文献求助10
11秒前
眼睛完成签到,获得积分10
11秒前
吴玉杰完成签到,获得积分10
11秒前
歇儿哒哒完成签到,获得积分10
11秒前
12秒前
xiaoxin完成签到,获得积分20
13秒前
13秒前
温婉的凝雁完成签到,获得积分20
14秒前
14秒前
xiaoxin发布了新的文献求助10
15秒前
Owen应助q_q_l采纳,获得10
16秒前
16秒前
领导范儿应助舒适的紫丝采纳,获得10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
科目三应助wxz采纳,获得10
18秒前
kaka0934完成签到,获得积分10
18秒前
20秒前
lkx完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778422
求助须知:如何正确求助?哪些是违规求助? 5641193
关于积分的说明 15449238
捐赠科研通 4910131
什么是DOI,文献DOI怎么找? 2642318
邀请新用户注册赠送积分活动 1590208
关于科研通互助平台的介绍 1544554