Additively manufactured high-performance AZ91D magnesium alloys with excellent strength and ductility via nanoparticles reinforcement

材料科学 极限抗拉强度 微观结构 延展性(地球科学) 复合材料 材料的强化机理 成核 多孔性 冶金 蠕动 化学 有机化学
作者
Xinzhi Li,Xuewei Fang,Xiao Jiang,Yusong Duan,Yan Li,Hongkai Zhang,Xiaopeng Li,Ke Huang
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:69: 103550-103550 被引量:21
标识
DOI:10.1016/j.addma.2023.103550
摘要

High-performance lightweight magnesium matrix composites (MMCs) play an important role in reducing CO2 emissions in the context of carbon neutrality. In order to promote the widespread applications of MMCs, academic research on the design and fabrication of MMCs has increased dramatically over the past decade. However, it is extremely challenging to prepare MMCs with conventional techniques. In this study, nearly-dense nanoparticles modified AZ91D composites containing 2 wt. % nano-TiCN were manufactured by laser powder bed fusion (L-PBF) technology. The influence of nano-TiCN on the L-PBF processability, microstructure evolution, tensile properties, and underlying mechanisms of TiCN/AZ91D composites were systematically investigated. Results demonstrate that a suitable amount of nano-TiCN introduced to AZ91D can improve densification, restrict growth and refine the size of α-Mg and β-Al12Mg17, and introduce more crystallographic defects. Consequently, the as-deposited TiCN/AZ91D composites exhibit excellent strength without compromising ductility (ultimate tensile strength of ∼361 MPa and elongation up to ∼8.9 %), which are far superior to those of most previously reported L-PBFed Mg alloys and MMCs. The underlying mechanisms for strength enhancement are mainly ascribed to the decreased volumetric porosity, grain boundary strengthening through the refined grain, dislocation strengthening due to local mismatch stress, as well as Orowan strengthening via intragranular nano-TiCN. The excellent ductility is mainly attributed to delayed void nucleation by decreased defects, grain refinement, homogenous and refined β-Al12Mg17, and improved dislocation plasticity by well-dispersed nano-TiCN. This study thus sheds new light on fabricating high-performance MMCs with complex geometry by L-PBF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
gengwenjing发布了新的文献求助10
4秒前
4秒前
英姑应助儒雅南风采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
酷波er应助小d采纳,获得10
7秒前
CodeCraft应助贪玩的灯泡采纳,获得10
8秒前
8秒前
太渊发布了新的文献求助10
8秒前
10秒前
pengliao完成签到,获得积分10
10秒前
10秒前
骑驴找马完成签到,获得积分20
11秒前
11秒前
14秒前
熊许君发布了新的文献求助10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助20
17秒前
17秒前
鱼鱼鱼发布了新的文献求助10
18秒前
苹果绿发布了新的文献求助10
20秒前
獭獭发布了新的文献求助10
21秒前
青堤完成签到,获得积分10
23秒前
所所应助魄罗bro采纳,获得10
24秒前
24秒前
25秒前
英俊的铭应助茜茜公主采纳,获得10
26秒前
大个应助lemonyu采纳,获得10
28秒前
哈哈哈发布了新的文献求助10
30秒前
小马甲应助xiubo128采纳,获得10
31秒前
凝凝完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
SciGPT应助豆豆可采纳,获得10
32秒前
一年半太久只争朝夕完成签到 ,获得积分10
32秒前
獭獭完成签到,获得积分10
32秒前
34秒前
34秒前
科研通AI5应助鱼鱼鱼采纳,获得30
35秒前
量子星尘发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4609632
求助须知:如何正确求助?哪些是违规求助? 4015849
关于积分的说明 12433791
捐赠科研通 3697128
什么是DOI,文献DOI怎么找? 2038611
邀请新用户注册赠送积分活动 1071593
科研通“疑难数据库(出版商)”最低求助积分说明 955323