Additively manufactured high-performance AZ91D magnesium alloys with excellent strength and ductility via nanoparticles reinforcement

材料科学 极限抗拉强度 微观结构 延展性(地球科学) 复合材料 材料的强化机理 成核 多孔性 冶金 蠕动 化学 有机化学
作者
Xinzhi Li,Xuewei Fang,Xiao Jiang,Yusong Duan,Yan Li,Hongkai Zhang,Xiaopeng Li,Ke Huang
出处
期刊:Additive manufacturing [Elsevier]
卷期号:69: 103550-103550 被引量:17
标识
DOI:10.1016/j.addma.2023.103550
摘要

High-performance lightweight magnesium matrix composites (MMCs) play an important role in reducing CO2 emissions in the context of carbon neutrality. In order to promote the widespread applications of MMCs, academic research on the design and fabrication of MMCs has increased dramatically over the past decade. However, it is extremely challenging to prepare MMCs with conventional techniques. In this study, nearly-dense nanoparticles modified AZ91D composites containing 2 wt. % nano-TiCN were manufactured by laser powder bed fusion (L-PBF) technology. The influence of nano-TiCN on the L-PBF processability, microstructure evolution, tensile properties, and underlying mechanisms of TiCN/AZ91D composites were systematically investigated. Results demonstrate that a suitable amount of nano-TiCN introduced to AZ91D can improve densification, restrict growth and refine the size of α-Mg and β-Al12Mg17, and introduce more crystallographic defects. Consequently, the as-deposited TiCN/AZ91D composites exhibit excellent strength without compromising ductility (ultimate tensile strength of ∼361 MPa and elongation up to ∼8.9 %), which are far superior to those of most previously reported L-PBFed Mg alloys and MMCs. The underlying mechanisms for strength enhancement are mainly ascribed to the decreased volumetric porosity, grain boundary strengthening through the refined grain, dislocation strengthening due to local mismatch stress, as well as Orowan strengthening via intragranular nano-TiCN. The excellent ductility is mainly attributed to delayed void nucleation by decreased defects, grain refinement, homogenous and refined β-Al12Mg17, and improved dislocation plasticity by well-dispersed nano-TiCN. This study thus sheds new light on fabricating high-performance MMCs with complex geometry by L-PBF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gilbert完成签到,获得积分10
1秒前
冰冰完成签到 ,获得积分10
2秒前
2秒前
3秒前
silence发布了新的社区帖子
5秒前
诚c发布了新的文献求助10
7秒前
7秒前
chuiji完成签到,获得积分10
8秒前
xiangdan发布了新的文献求助10
8秒前
10秒前
12秒前
小郭发布了新的文献求助10
12秒前
12秒前
Henry给迢迢笙箫的求助进行了留言
13秒前
公冶愚志发布了新的文献求助20
14秒前
小北发布了新的文献求助10
15秒前
steiner完成签到,获得积分10
15秒前
SIN发布了新的文献求助10
17秒前
wzyyyyy发布了新的文献求助10
17秒前
虚幻雁荷完成签到 ,获得积分10
17秒前
18秒前
anyi应助闪闪的梦柏采纳,获得10
19秒前
小白发布了新的文献求助10
20秒前
20秒前
20秒前
桂圆发布了新的文献求助10
21秒前
Owen应助Dr_zsc采纳,获得10
21秒前
dxtmm发布了新的文献求助10
23秒前
小谭完成签到 ,获得积分10
23秒前
24秒前
英姑应助xiangdan采纳,获得10
24秒前
sunianjinshi发布了新的文献求助20
25秒前
彭于晏应助中中采纳,获得10
25秒前
25秒前
25秒前
番茄发布了新的文献求助10
29秒前
样子发布了新的文献求助10
29秒前
蔺天宇完成签到,获得积分10
30秒前
magicyouyou发布了新的文献求助20
30秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291