KaryoNet: Chromosome Recognition With End-to-End Combinatorial Optimization Network

端到端原则 染色体 计算机科学 人工智能 生物 遗传学 基因
作者
Chao Xia,Jiyue Wang,Yulei Qin,Juan Wen,Zhaojiang Liu,Ning Song,Lingqian Wu,Bing Chen,Yun Gu,Jie Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 2899-2911 被引量:11
标识
DOI:10.1109/tmi.2023.3268889
摘要

Chromosome recognition is a critical way to diagnose various hematological malignancies and genetic diseases, which is however a repetitive and time-consuming process in karyotyping. To explore the relative relation between chromosomes, in this work, we start from a global perspective and learn the contextual interactions and class distribution features between chromosomes within a karyotype. We propose an end-to-end differentiable combinatorial optimization method, KaryoNet, which captures long-range interactions between chromosomes with the proposed Masked Feature Interaction Module (MFIM) and conducts label assignment in a flexible and differentiable way with Deep Assignment Module (DAM). Specially, a Feature Matching Sub-Network is built to predict the mask array for attention computation in MFIM. Lastly, Type and Polarity Prediction Head can predict chromosome type and polarity simultaneously. Extensive experiments on R-band and G-band two clinical datasets demonstrate the merits of the proposed method. For normal karyotypes, the proposed KaryoNet achieves the accuracy of 98.41% on R-band chromosome and 99.58% on G-band chromosome. Owing to the extracted internal relation and class distribution features, KaryoNet can also achieve state-of-the-art performances on karyotypes of patients with different types of numerical abnormalities. The proposed method has been applied to assist clinical karyotype diagnosis. Our code is available at: https://github.com/xiabc612/KaryoNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助Ryo采纳,获得10
刚刚
刚刚
chen完成签到,获得积分10
1秒前
小瑞发布了新的文献求助10
1秒前
共享精神应助TY采纳,获得10
2秒前
haimianbaobao完成签到 ,获得积分10
2秒前
情怀应助sghsh采纳,获得10
2秒前
科研通AI6应助dongjingbutaire采纳,获得10
2秒前
456发布了新的文献求助10
2秒前
kkk完成签到,获得积分10
2秒前
Cynthia发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
宣千易发布了新的文献求助10
4秒前
柔弱的便当完成签到,获得积分10
4秒前
年轻的问兰完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
彭于晏应助Jasmine采纳,获得10
5秒前
5秒前
Orange应助little_forest采纳,获得10
6秒前
小火孩发布了新的文献求助10
6秒前
大个应助顺利的奇异果采纳,获得10
6秒前
酷波er应助herdwind采纳,获得10
7秒前
7秒前
Lucas应助维洛尼亚采纳,获得10
7秒前
无极微光应助HEANZ采纳,获得20
7秒前
liao应助美好斓采纳,获得10
8秒前
单薄不惜完成签到,获得积分10
8秒前
汐风完成签到,获得积分10
8秒前
8秒前
9秒前
隐形曼青应助acuter采纳,获得30
9秒前
9秒前
kakoi完成签到,获得积分20
9秒前
小唐完成签到,获得积分20
9秒前
大模型应助Goyounjung采纳,获得10
9秒前
wanci应助小太阳采纳,获得10
10秒前
coolplex发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210