KaryoNet: Chromosome Recognition With End-to-End Combinatorial Optimization Network

端到端原则 染色体 计算机科学 人工智能 生物 遗传学 基因
作者
Chao Xia,Jiyue Wang,Yulei Qin,Juan Wen,Zhaojiang Liu,Ning Song,Lingqian Wu,Bing Chen,Yun Gu,Jie Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 2899-2911 被引量:11
标识
DOI:10.1109/tmi.2023.3268889
摘要

Chromosome recognition is a critical way to diagnose various hematological malignancies and genetic diseases, which is however a repetitive and time-consuming process in karyotyping. To explore the relative relation between chromosomes, in this work, we start from a global perspective and learn the contextual interactions and class distribution features between chromosomes within a karyotype. We propose an end-to-end differentiable combinatorial optimization method, KaryoNet, which captures long-range interactions between chromosomes with the proposed Masked Feature Interaction Module (MFIM) and conducts label assignment in a flexible and differentiable way with Deep Assignment Module (DAM). Specially, a Feature Matching Sub-Network is built to predict the mask array for attention computation in MFIM. Lastly, Type and Polarity Prediction Head can predict chromosome type and polarity simultaneously. Extensive experiments on R-band and G-band two clinical datasets demonstrate the merits of the proposed method. For normal karyotypes, the proposed KaryoNet achieves the accuracy of 98.41% on R-band chromosome and 99.58% on G-band chromosome. Owing to the extracted internal relation and class distribution features, KaryoNet can also achieve state-of-the-art performances on karyotypes of patients with different types of numerical abnormalities. The proposed method has been applied to assist clinical karyotype diagnosis. Our code is available at: https://github.com/xiabc612/KaryoNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Solitude_Z完成签到,获得积分10
刚刚
WW发布了新的文献求助10
刚刚
忧郁的沁发布了新的文献求助10
1秒前
1秒前
Yu发布了新的文献求助10
1秒前
哈哈完成签到,获得积分20
2秒前
愉快晟睿发布了新的文献求助10
2秒前
xiaochaoge发布了新的文献求助10
3秒前
善良傲晴完成签到,获得积分10
3秒前
Iloveyou发布了新的文献求助10
3秒前
Zzy完成签到,获得积分10
3秒前
我是老大应助XXGG采纳,获得10
3秒前
3秒前
我球呢完成签到,获得积分10
4秒前
4秒前
斯文败类应助ldkshifo采纳,获得30
5秒前
5秒前
5秒前
CodeCraft应助Fury采纳,获得10
5秒前
食杂砸发布了新的文献求助10
5秒前
SciGPT应助Yu采纳,获得10
5秒前
丘比特应助王小玉玉采纳,获得10
5秒前
xuo关注了科研通微信公众号
6秒前
俏皮的松鼠完成签到,获得积分10
6秒前
6秒前
君莫笑完成签到 ,获得积分10
7秒前
7秒前
7秒前
科研通AI2S应助xiaochaoge采纳,获得10
7秒前
领导范儿应助ww417采纳,获得10
8秒前
赵世鹏完成签到,获得积分10
8秒前
充电宝应助Xzj采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
遥远星辰完成签到,获得积分10
9秒前
麦乐提完成签到,获得积分10
9秒前
Hyy完成签到 ,获得积分10
9秒前
旷野完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055