KaryoNet: Chromosome Recognition With End-to-End Combinatorial Optimization Network

端到端原则 染色体 计算机科学 人工智能 生物 遗传学 基因
作者
Chao Xia,Jiyue Wang,Yulei Qin,Juan Wen,Zhaojiang Liu,Ning Song,Lingqian Wu,Bing Chen,Yun Gu,Jie Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 2899-2911 被引量:11
标识
DOI:10.1109/tmi.2023.3268889
摘要

Chromosome recognition is a critical way to diagnose various hematological malignancies and genetic diseases, which is however a repetitive and time-consuming process in karyotyping. To explore the relative relation between chromosomes, in this work, we start from a global perspective and learn the contextual interactions and class distribution features between chromosomes within a karyotype. We propose an end-to-end differentiable combinatorial optimization method, KaryoNet, which captures long-range interactions between chromosomes with the proposed Masked Feature Interaction Module (MFIM) and conducts label assignment in a flexible and differentiable way with Deep Assignment Module (DAM). Specially, a Feature Matching Sub-Network is built to predict the mask array for attention computation in MFIM. Lastly, Type and Polarity Prediction Head can predict chromosome type and polarity simultaneously. Extensive experiments on R-band and G-band two clinical datasets demonstrate the merits of the proposed method. For normal karyotypes, the proposed KaryoNet achieves the accuracy of 98.41% on R-band chromosome and 99.58% on G-band chromosome. Owing to the extracted internal relation and class distribution features, KaryoNet can also achieve state-of-the-art performances on karyotypes of patients with different types of numerical abnormalities. The proposed method has been applied to assist clinical karyotype diagnosis. Our code is available at: https://github.com/xiabc612/KaryoNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助紫气东来采纳,获得10
刚刚
ZZH完成签到,获得积分10
刚刚
木子发布了新的文献求助10
1秒前
1秒前
欣喜的饼干完成签到,获得积分10
1秒前
科研通AI6应助江边鸟采纳,获得10
1秒前
FXQ123_范完成签到,获得积分10
1秒前
宋温暖应助蕲艾比比谁采纳,获得20
1秒前
1秒前
1秒前
无辜友绿完成签到,获得积分10
2秒前
丫丫完成签到,获得积分20
2秒前
泡泡糖完成签到,获得积分10
2秒前
rzzzy驳回了lieeey应助
3秒前
周周完成签到,获得积分10
3秒前
bkagyin应助细心的白翠采纳,获得10
3秒前
Lucas应助难过的溪流采纳,获得10
4秒前
zm发布了新的文献求助10
4秒前
5秒前
pcr163应助hyd1640采纳,获得200
5秒前
陈宝宝完成签到,获得积分10
5秒前
十三发布了新的文献求助30
6秒前
体贴绮露发布了新的文献求助10
6秒前
ZZZ发布了新的文献求助10
6秒前
小医小鱼完成签到,获得积分10
6秒前
丘比特应助Gin_采纳,获得10
7秒前
JamesPei应助欣喜的饼干采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
彭于晏应助SAF采纳,获得10
7秒前
张培元发布了新的文献求助10
8秒前
情怀应助小吉麻麻采纳,获得10
9秒前
tanbao完成签到,获得积分10
9秒前
任寒松发布了新的文献求助10
10秒前
zuozuo完成签到,获得积分10
11秒前
11秒前
xx完成签到,获得积分10
11秒前
领导范儿应助沉静胜采纳,获得10
11秒前
11秒前
爆米花应助皇甫锾铬采纳,获得10
12秒前
汉堡包应助我www采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679