KaryoNet: Chromosome Recognition With End-to-End Combinatorial Optimization Network

端到端原则 染色体 计算机科学 人工智能 生物 遗传学 基因
作者
Chao Xia,Jiyue Wang,Yulei Qin,Juan Wen,Zhaojiang Liu,Ning Song,Lingqian Wu,Bing Chen,Yun Gu,Jie Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 2899-2911 被引量:11
标识
DOI:10.1109/tmi.2023.3268889
摘要

Chromosome recognition is a critical way to diagnose various hematological malignancies and genetic diseases, which is however a repetitive and time-consuming process in karyotyping. To explore the relative relation between chromosomes, in this work, we start from a global perspective and learn the contextual interactions and class distribution features between chromosomes within a karyotype. We propose an end-to-end differentiable combinatorial optimization method, KaryoNet, which captures long-range interactions between chromosomes with the proposed Masked Feature Interaction Module (MFIM) and conducts label assignment in a flexible and differentiable way with Deep Assignment Module (DAM). Specially, a Feature Matching Sub-Network is built to predict the mask array for attention computation in MFIM. Lastly, Type and Polarity Prediction Head can predict chromosome type and polarity simultaneously. Extensive experiments on R-band and G-band two clinical datasets demonstrate the merits of the proposed method. For normal karyotypes, the proposed KaryoNet achieves the accuracy of 98.41% on R-band chromosome and 99.58% on G-band chromosome. Owing to the extracted internal relation and class distribution features, KaryoNet can also achieve state-of-the-art performances on karyotypes of patients with different types of numerical abnormalities. The proposed method has been applied to assist clinical karyotype diagnosis. Our code is available at: https://github.com/xiabc612/KaryoNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
油条狗完成签到,获得积分10
1秒前
阿峤完成签到,获得积分10
2秒前
完美世界应助简单小鸭子采纳,获得10
3秒前
小学生1号完成签到 ,获得积分10
3秒前
4秒前
yb716发布了新的文献求助10
4秒前
欣慰弘文完成签到,获得积分10
4秒前
5秒前
ao发布了新的文献求助10
6秒前
英姑应助Tacit采纳,获得10
6秒前
小蘑菇应助hbhbj采纳,获得10
6秒前
perple发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
副掌门完成签到,获得积分10
7秒前
源孤律醒完成签到 ,获得积分10
7秒前
称心的绿竹完成签到,获得积分10
7秒前
江应怜完成签到 ,获得积分10
8秒前
Freedom完成签到,获得积分10
9秒前
wrjww完成签到,获得积分10
9秒前
Nowind完成签到,获得积分10
9秒前
kunny完成签到 ,获得积分10
10秒前
10秒前
慕青应助Suc采纳,获得10
11秒前
12秒前
独特冬天完成签到,获得积分10
12秒前
高院士完成签到,获得积分10
13秒前
13秒前
李爱国应助ssy采纳,获得10
14秒前
豆豆发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
YANG完成签到 ,获得积分0
18秒前
jingjing发布了新的文献求助60
19秒前
an完成签到,获得积分10
20秒前
领导范儿应助Zhong采纳,获得10
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838