亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

KaryoNet: Chromosome Recognition With End-to-End Combinatorial Optimization Network

端到端原则 染色体 计算机科学 人工智能 生物 遗传学 基因
作者
Chao Xia,Jiyue Wang,Yulei Qin,Juan Wen,Zhaojiang Liu,Ning Song,Lingqian Wu,Bing Chen,Yun Gu,Jie Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (10): 2899-2911 被引量:11
标识
DOI:10.1109/tmi.2023.3268889
摘要

Chromosome recognition is a critical way to diagnose various hematological malignancies and genetic diseases, which is however a repetitive and time-consuming process in karyotyping. To explore the relative relation between chromosomes, in this work, we start from a global perspective and learn the contextual interactions and class distribution features between chromosomes within a karyotype. We propose an end-to-end differentiable combinatorial optimization method, KaryoNet, which captures long-range interactions between chromosomes with the proposed Masked Feature Interaction Module (MFIM) and conducts label assignment in a flexible and differentiable way with Deep Assignment Module (DAM). Specially, a Feature Matching Sub-Network is built to predict the mask array for attention computation in MFIM. Lastly, Type and Polarity Prediction Head can predict chromosome type and polarity simultaneously. Extensive experiments on R-band and G-band two clinical datasets demonstrate the merits of the proposed method. For normal karyotypes, the proposed KaryoNet achieves the accuracy of 98.41% on R-band chromosome and 99.58% on G-band chromosome. Owing to the extracted internal relation and class distribution features, KaryoNet can also achieve state-of-the-art performances on karyotypes of patients with different types of numerical abnormalities. The proposed method has been applied to assist clinical karyotype diagnosis. Our code is available at: https://github.com/xiabc612/KaryoNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
10秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
11秒前
12秒前
zly完成签到 ,获得积分10
14秒前
NINO发布了新的文献求助10
14秒前
Zenia发布了新的文献求助10
15秒前
16秒前
19秒前
21秒前
斯文败类应助科研通管家采纳,获得10
23秒前
23秒前
Xiaoxiao应助科研通管家采纳,获得30
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
23秒前
TanZhiyuan发布了新的文献求助30
26秒前
绝世冰淇淋完成签到 ,获得积分10
28秒前
伏城完成签到 ,获得积分10
29秒前
30秒前
31秒前
31秒前
32秒前
dax大雄完成签到 ,获得积分10
34秒前
35秒前
37秒前
青青完成签到 ,获得积分10
37秒前
38秒前
喬老師完成签到,获得积分10
39秒前
Cyrus完成签到 ,获得积分10
40秒前
40秒前
LYL发布了新的文献求助10
43秒前
Akim应助TanZhiyuan采纳,获得10
48秒前
LYL完成签到,获得积分10
50秒前
阿伟发布了新的文献求助10
53秒前
55秒前
58秒前
夏侯德东完成签到,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090573
求助须知:如何正确求助?哪些是违规求助? 4305223
关于积分的说明 13415385
捐赠科研通 4130816
什么是DOI,文献DOI怎么找? 2262661
邀请新用户注册赠送积分活动 1266556
关于科研通互助平台的介绍 1201356