Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons

吸附 Boosting(机器学习) 计算机科学 梯度升压 范畴变量 人工智能 特征(语言学) 机器学习 生物系统 材料科学 随机森林 化学 有机化学 语言学 生物 哲学
作者
Sarvesh Namdeo,Vimal Chandra Srivastava,Paritosh Mohanty
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:647: 174-187 被引量:18
标识
DOI:10.1016/j.jcis.2023.05.052
摘要

Adsorption of CO2 on porous carbons has been identified as one of the promising methods for carbon capture. This research implemented six supervised machine learning (ML) models (gradient boosting decision tree (GBDT), extreme gradient boosting (XGB), light boost gradient machine (LBGM), random forest (RF), categorical boosting (Catboost), and adaptive boosting (Adaboost)) to understand and predict the CO2 adsorption mechanism and adsorption uptake, respectively. The results recommended that the GBDT outperformed the remaining five ML models for CO2 adsorption. However, XGB, LBGM, RF, and Catboost also represented the prediction in the acceptable range. The GBDT model indicated the accurate prediction of CO2 uptake onto the porous carbons considering adsorbent properties and adsorption conditions as model input parameters. Next, two-factor partial dependence plots revealed a lucid explanation of how the combinations of two input features affect the model prediction. Furthermore, SHapley Additive exPlainations (SHAP), a novel explication approach based on ML models, were employed to understand and elucidate the CO2 adsorption and model prediction. The SHAP explanations, implemented on the GBDT model, revealed the rigorous relationships among the input features and output variables based on the GBDT prediction. Additionally, SHAP provided clear-cut feature importance analysis and individual feature impact on the prediction. SHAP also explained two instances of CO2 adsorption. Along with the data-driven insightful explanation of CO2 adsorption onto porous carbons, this study also provides a promising method to predict the clear-cut performance of porous carbons for CO2 adsorption without performing any experiments and open new avenues for researchers to implement this study in the field of adsorption because a lot of data is being generated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Labor2025完成签到,获得积分10
刚刚
小崔加油完成签到,获得积分10
刚刚
林少玮发布了新的文献求助10
1秒前
1秒前
科研通AI5应助newfat采纳,获得10
1秒前
2秒前
香蕉觅云应助可靠的寒风采纳,获得10
2秒前
2秒前
烟花应助燕不留声采纳,获得10
2秒前
吴淼发布了新的文献求助10
2秒前
2秒前
cdercder应助长医德莱文采纳,获得20
2秒前
2秒前
3秒前
woshiwuziq发布了新的文献求助10
3秒前
3秒前
你柿不柿莓柿完成签到,获得积分10
4秒前
5秒前
离夜发布了新的文献求助10
5秒前
EdwardKING发布了新的文献求助10
5秒前
6秒前
李乐完成签到,获得积分20
6秒前
6秒前
运敬完成签到 ,获得积分10
6秒前
科研通AI2S应助十一采纳,获得10
6秒前
肉肉发布了新的文献求助10
7秒前
7秒前
漂亮夏兰完成签到 ,获得积分10
7秒前
所所应助猪猪hero采纳,获得10
7秒前
7秒前
又晴发布了新的文献求助10
7秒前
7秒前
zwk发布了新的文献求助10
7秒前
7秒前
淡定发布了新的文献求助10
8秒前
plutosmall发布了新的文献求助10
8秒前
sora98完成签到 ,获得积分10
8秒前
在水一方应助owlhealth采纳,获得10
8秒前
劲秉发布了新的文献求助10
9秒前
9秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747963
求助须知:如何正确求助?哪些是违规求助? 3290830
关于积分的说明 10071227
捐赠科研通 3006723
什么是DOI,文献DOI怎么找? 1651273
邀请新用户注册赠送积分活动 786287
科研通“疑难数据库(出版商)”最低求助积分说明 751630