Energy-Aware, Device-to-Device Assisted Federated Learning in Edge Computing

计算机科学 边缘设备 边缘计算 上传 推论 启发式 GSM演进的增强数据速率 人工智能 移动边缘计算 深度学习 能源消耗 供应 人工神经网络 移动设备 高效能源利用 机器学习 计算机网络 云计算 操作系统 生物 生态学 电气工程 工程类
作者
Yuchen Li,Weifa Liang,Jing Li,Xiuzhen Cheng,Dongxiao Yu,Albert Y. Zomaya,Song Guo
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 2138-2154 被引量:14
标识
DOI:10.1109/tpds.2023.3277423
摘要

The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet of Things (IoT), and the rise of edge intelligence enables provisioning real-time deep neural network (DNN) inference services for mobile users. To perform efficient and effective DNN model training in edge computing environments while preserving training data security and privacy of IoT devices, federated learning has been envisioned as an ideal learning paradigm for this purpose. In this article, we study energy-aware DNN model training in edge computing. We first formulate a novel energy-aware, Device-to-Device (D2D) assisted federated learning problem with the aim to minimize the global loss of a training DNN model, subject to bandwidth capacity on an edge server and energy capacity on each IoT device. We then devise a near-optimal learning algorithm for the problem when the training data follows the i.i.d. data distribution. The crux of the proposed algorithm is to explore using the energy of neighboring devices of each device for its local model uploading, by reducing the problem to a series of weighted maximum matching problems in corresponding auxiliary graphs. We also consider the problem without the assumption of the i.i.d. data distribution, for which we propose an efficient heuristic algorithm. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results show that the proposed algorithms are promising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MRu发布了新的文献求助10
刚刚
lunwenxi发布了新的文献求助30
刚刚
Dr.Sun发布了新的文献求助10
1秒前
1秒前
在水一方应助111采纳,获得10
1秒前
Niko发布了新的文献求助30
1秒前
科研通AI6应助Xiaobo采纳,获得10
1秒前
1秒前
GJJ完成签到,获得积分10
2秒前
Unfair发布了新的文献求助10
2秒前
打打应助十个勤天采纳,获得10
2秒前
Orange应助孔蓓蓓采纳,获得10
2秒前
无心的闭月完成签到,获得积分10
3秒前
3秒前
lixue完成签到,获得积分10
4秒前
4秒前
4秒前
vetXue完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
今后应助沉默的发卡采纳,获得10
5秒前
潇洒的竹杖应助TingtingGZ采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
juaner完成签到,获得积分10
6秒前
6秒前
lihuanmoon完成签到,获得积分10
6秒前
殷超完成签到,获得积分10
7秒前
欢呼鼠标完成签到,获得积分10
7秒前
斯文败类应助风清扬采纳,获得10
7秒前
吐司发布了新的文献求助10
8秒前
hello_25baby完成签到,获得积分10
8秒前
浮游应助Ooo采纳,获得10
8秒前
彭于晏应助Niko采纳,获得10
8秒前
8秒前
8秒前
缓慢钢笔发布了新的文献求助10
9秒前
9秒前
聿木完成签到,获得积分20
9秒前
Owen应助明亮如花采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779