Energy-Aware, Device-to-Device Assisted Federated Learning in Edge Computing

计算机科学 边缘设备 边缘计算 上传 推论 启发式 GSM演进的增强数据速率 人工智能 移动边缘计算 深度学习 能源消耗 供应 人工神经网络 移动设备 高效能源利用 机器学习 计算机网络 云计算 工程类 电气工程 操作系统 生物 生态学
作者
Yuchen Li,Weifa Liang,Jing Li,Xiuzhen Cheng,Dongxiao Yu,Albert Y. Zomaya,Song Guo
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 2138-2154 被引量:14
标识
DOI:10.1109/tpds.2023.3277423
摘要

The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet of Things (IoT), and the rise of edge intelligence enables provisioning real-time deep neural network (DNN) inference services for mobile users. To perform efficient and effective DNN model training in edge computing environments while preserving training data security and privacy of IoT devices, federated learning has been envisioned as an ideal learning paradigm for this purpose. In this article, we study energy-aware DNN model training in edge computing. We first formulate a novel energy-aware, Device-to-Device (D2D) assisted federated learning problem with the aim to minimize the global loss of a training DNN model, subject to bandwidth capacity on an edge server and energy capacity on each IoT device. We then devise a near-optimal learning algorithm for the problem when the training data follows the i.i.d. data distribution. The crux of the proposed algorithm is to explore using the energy of neighboring devices of each device for its local model uploading, by reducing the problem to a series of weighted maximum matching problems in corresponding auxiliary graphs. We also consider the problem without the assumption of the i.i.d. data distribution, for which we propose an efficient heuristic algorithm. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results show that the proposed algorithms are promising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
偷懒发布了新的文献求助10
刚刚
1秒前
科研通AI5应助余佘采纳,获得10
1秒前
1秒前
害羞的紫伊完成签到,获得积分10
1秒前
wanci应助妙木仙采纳,获得10
2秒前
安静的十八完成签到,获得积分10
2秒前
2秒前
duming发布了新的文献求助10
3秒前
夏侯初发布了新的文献求助10
3秒前
4秒前
像鱼完成签到,获得积分10
4秒前
4秒前
LArry完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
asilamu发布了新的文献求助10
6秒前
8秒前
微笑驳发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
小满发布了新的文献求助10
9秒前
科研通AI5应助偷懒采纳,获得10
10秒前
虚幻的素发布了新的文献求助10
10秒前
hua发布了新的文献求助20
10秒前
Song发布了新的文献求助10
11秒前
受伤巧曼发布了新的文献求助10
11秒前
丘比特应助小何同学采纳,获得10
11秒前
13秒前
13秒前
NIUBEN发布了新的文献求助10
14秒前
赘婿应助活泼的活泼采纳,获得10
15秒前
谨慎秋寒发布了新的文献求助10
15秒前
凯凯完成签到,获得积分10
15秒前
凉兮发布了新的文献求助10
15秒前
iNk应助GSQ采纳,获得20
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559024
求助须知:如何正确求助?哪些是违规求助? 3985748
关于积分的说明 12340214
捐赠科研通 3656286
什么是DOI,文献DOI怎么找? 2014287
邀请新用户注册赠送积分活动 1049131
科研通“疑难数据库(出版商)”最低求助积分说明 937477