Energy-Aware, Device-to-Device Assisted Federated Learning in Edge Computing

计算机科学 边缘设备 边缘计算 上传 推论 启发式 GSM演进的增强数据速率 人工智能 移动边缘计算 深度学习 能源消耗 供应 人工神经网络 移动设备 高效能源利用 机器学习 计算机网络 云计算 操作系统 生物 生态学 电气工程 工程类
作者
Yuchen Li,Weifa Liang,Jing Li,Xiuzhen Cheng,Dongxiao Yu,Albert Y. Zomaya,Song Guo
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 2138-2154 被引量:14
标识
DOI:10.1109/tpds.2023.3277423
摘要

The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet of Things (IoT), and the rise of edge intelligence enables provisioning real-time deep neural network (DNN) inference services for mobile users. To perform efficient and effective DNN model training in edge computing environments while preserving training data security and privacy of IoT devices, federated learning has been envisioned as an ideal learning paradigm for this purpose. In this article, we study energy-aware DNN model training in edge computing. We first formulate a novel energy-aware, Device-to-Device (D2D) assisted federated learning problem with the aim to minimize the global loss of a training DNN model, subject to bandwidth capacity on an edge server and energy capacity on each IoT device. We then devise a near-optimal learning algorithm for the problem when the training data follows the i.i.d. data distribution. The crux of the proposed algorithm is to explore using the energy of neighboring devices of each device for its local model uploading, by reducing the problem to a series of weighted maximum matching problems in corresponding auxiliary graphs. We also consider the problem without the assumption of the i.i.d. data distribution, for which we propose an efficient heuristic algorithm. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results show that the proposed algorithms are promising.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛茅茅猫完成签到,获得积分10
1秒前
共享精神应助zxx采纳,获得10
1秒前
1秒前
凌中豆完成签到,获得积分10
2秒前
Lucas应助樱花鱼不香采纳,获得10
2秒前
xx11完成签到,获得积分20
3秒前
大模型应助faker采纳,获得10
3秒前
无情尔芙完成签到,获得积分10
3秒前
甜乎贝贝发布了新的文献求助10
3秒前
XGuo完成签到 ,获得积分20
3秒前
大将军完成签到,获得积分10
3秒前
3秒前
4秒前
科研通AI6应助高贵的安寒采纳,获得10
4秒前
4秒前
strangeliu完成签到,获得积分10
5秒前
mikaqyan给mikaqyan的求助进行了留言
5秒前
5秒前
5秒前
lwwlccc完成签到,获得积分10
6秒前
6秒前
菟丝子完成签到,获得积分10
6秒前
QH应助科研通管家采纳,获得10
6秒前
小茗完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
ding应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
辛勤母鸡完成签到 ,获得积分10
6秒前
维奈克拉应助科研通管家采纳,获得10
6秒前
Nano应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517136
求助须知:如何正确求助?哪些是违规求助? 4610040
关于积分的说明 14519807
捐赠科研通 4547100
什么是DOI,文献DOI怎么找? 2491491
邀请新用户注册赠送积分活动 1473109
关于科研通互助平台的介绍 1445010