Energy-Aware, Device-to-Device Assisted Federated Learning in Edge Computing

计算机科学 边缘设备 边缘计算 上传 推论 启发式 GSM演进的增强数据速率 人工智能 移动边缘计算 深度学习 能源消耗 供应 人工神经网络 移动设备 高效能源利用 机器学习 计算机网络 云计算 操作系统 生物 生态学 电气工程 工程类
作者
Yuchen Li,Weifa Liang,Jing Li,Xiuzhen Cheng,Dongxiao Yu,Albert Y. Zomaya,Song Guo
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 2138-2154 被引量:14
标识
DOI:10.1109/tpds.2023.3277423
摘要

The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet of Things (IoT), and the rise of edge intelligence enables provisioning real-time deep neural network (DNN) inference services for mobile users. To perform efficient and effective DNN model training in edge computing environments while preserving training data security and privacy of IoT devices, federated learning has been envisioned as an ideal learning paradigm for this purpose. In this article, we study energy-aware DNN model training in edge computing. We first formulate a novel energy-aware, Device-to-Device (D2D) assisted federated learning problem with the aim to minimize the global loss of a training DNN model, subject to bandwidth capacity on an edge server and energy capacity on each IoT device. We then devise a near-optimal learning algorithm for the problem when the training data follows the i.i.d. data distribution. The crux of the proposed algorithm is to explore using the energy of neighboring devices of each device for its local model uploading, by reducing the problem to a series of weighted maximum matching problems in corresponding auxiliary graphs. We also consider the problem without the assumption of the i.i.d. data distribution, for which we propose an efficient heuristic algorithm. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results show that the proposed algorithms are promising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情凡灵完成签到,获得积分10
刚刚
刚刚
刚刚
yy完成签到,获得积分10
1秒前
ArkZ发布了新的文献求助10
1秒前
1秒前
2秒前
fanlin完成签到,获得积分0
3秒前
ding应助糯糯采纳,获得10
3秒前
CipherSage应助欣欣子采纳,获得10
4秒前
4秒前
jin完成签到,获得积分10
4秒前
深情凡灵发布了新的文献求助10
5秒前
起风了发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
wxx771510625完成签到 ,获得积分10
6秒前
烟花应助追寻澜采纳,获得10
6秒前
6秒前
tmobiusx发布了新的文献求助10
7秒前
Jasper应助奈奈采纳,获得10
7秒前
丫丫完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
东方诩发布了新的文献求助10
8秒前
9秒前
脑洞疼应助Doc_d采纳,获得10
9秒前
10秒前
可爱的函函应助书记采纳,获得10
10秒前
aliena发布了新的文献求助10
10秒前
可爱的函函应助Blue采纳,获得10
10秒前
小火苗发布了新的文献求助10
11秒前
情深以挽发布了新的文献求助10
11秒前
Gaojinyun完成签到,获得积分10
12秒前
听话的衬衫应助飲啖茶采纳,获得50
12秒前
乐观的雁兰完成签到,获得积分10
13秒前
13秒前
13秒前
xp完成签到,获得积分10
13秒前
李健的小迷弟应助wangh采纳,获得10
13秒前
李爱国应助小小小肥鸡采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462356
求助须知:如何正确求助?哪些是违规求助? 4567071
关于积分的说明 14308590
捐赠科研通 4492868
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425788