Energy-Aware, Device-to-Device Assisted Federated Learning in Edge Computing

计算机科学 边缘设备 边缘计算 上传 推论 启发式 GSM演进的增强数据速率 人工智能 移动边缘计算 深度学习 能源消耗 供应 人工神经网络 移动设备 高效能源利用 机器学习 计算机网络 云计算 工程类 电气工程 操作系统 生物 生态学
作者
Yuchen Li,Weifa Liang,Jing Li,Xiuzhen Cheng,Dongxiao Yu,Albert Y. Zomaya,Song Guo
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 2138-2154 被引量:14
标识
DOI:10.1109/tpds.2023.3277423
摘要

The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet of Things (IoT), and the rise of edge intelligence enables provisioning real-time deep neural network (DNN) inference services for mobile users. To perform efficient and effective DNN model training in edge computing environments while preserving training data security and privacy of IoT devices, federated learning has been envisioned as an ideal learning paradigm for this purpose. In this article, we study energy-aware DNN model training in edge computing. We first formulate a novel energy-aware, Device-to-Device (D2D) assisted federated learning problem with the aim to minimize the global loss of a training DNN model, subject to bandwidth capacity on an edge server and energy capacity on each IoT device. We then devise a near-optimal learning algorithm for the problem when the training data follows the i.i.d. data distribution. The crux of the proposed algorithm is to explore using the energy of neighboring devices of each device for its local model uploading, by reducing the problem to a series of weighted maximum matching problems in corresponding auxiliary graphs. We also consider the problem without the assumption of the i.i.d. data distribution, for which we propose an efficient heuristic algorithm. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results show that the proposed algorithms are promising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘乐发布了新的文献求助10
刚刚
柳觅夏发布了新的文献求助10
刚刚
Lucas应助芜湖芜湖采纳,获得10
1秒前
HOOW发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
4秒前
cytheria发布了新的文献求助10
4秒前
时间的过客完成签到,获得积分10
4秒前
HesperLxy发布了新的文献求助10
4秒前
SciGPT应助天天玩采纳,获得10
6秒前
6秒前
NexusExplorer应助cc采纳,获得10
6秒前
李爱国应助千尺焰采纳,获得10
7秒前
666发布了新的文献求助10
8秒前
美好斓发布了新的文献求助10
8秒前
8秒前
zzz发布了新的文献求助30
10秒前
文献小白发布了新的文献求助10
10秒前
xxx发布了新的文献求助30
10秒前
666完成签到,获得积分10
10秒前
Jasper应助cc采纳,获得10
11秒前
思源应助hahaha采纳,获得10
12秒前
嘻嘻发布了新的文献求助20
12秒前
12秒前
12秒前
Aurora发布了新的文献求助10
13秒前
angel完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
NexusExplorer应助ercha采纳,获得10
15秒前
cytheria完成签到,获得积分10
15秒前
16秒前
16秒前
小杭76应助九漏鱼采纳,获得10
16秒前
17秒前
JXDYYZK发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Handbook of Industrial Inkjet Printing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961