Enhanced Strong Coupling in the Hybrid Dielectric-Metallic Nanoresonator and WS2 Monolayer

电介质 激子 材料科学 等离子体子 联轴节(管道) 光电子学 极化子 单层 凝聚态物理 物理 纳米技术 复合材料
作者
Khalil As’ham,Ibrahim Al‐Ani,Mohammed Alaloul,Salah Abdo,Amer Abdulghani,Wen Lei,Haroldo T. Hattori,Lujun Huang,Andrey E. Miroshnichenko
出处
期刊:Physical review applied [American Physical Society]
卷期号:19 (5) 被引量:15
标识
DOI:10.1103/physrevapplied.19.054049
摘要

Exciton polaritons in metallic nanocavities and transition-metal dichalcogenide monolayers has led to striking discoveries, ranging from Bose-Einstein condensation to slowing light. Although plasmonic nanocavities offer small mode volumes, the intrinsic losses of plasmonic nanocavities remain an open challenge in exciton-polariton devices. Consequently, dielectric nanocavities are used as an alternative candidate due to their low intrinsic losses. However, large mode volumes are a central bottleneck in dielectric nanocavities. Here, we theoretically propose to use a hybrid dielectric-metallic nanocavity to enhance light-matter interactions between the excitons of the ${\mathrm{WS}}_{2}$ monolayer and the hybrid nanocavity. Such a hybrid nanoresonator inherits the advantages of both dielectric and metallic nanocavities, including ultrasmall mode volume, ultralow losses, and reasonably-high-Q factor. It is demonstrated that the thickness and material of the central gap film together with the thickness of the metallic substrate play vital roles in governing the coupling strength between 1L-${\mathrm{WS}}_{2}$ excitons and the cavity. After optimizing the geometry and material parameters, the Rabi splitting is increased to 113 meV, almost twice that in dielectric metasystems. The significant improvement can be attributed to the greatly enhanced near field and the ultrasmall mode volume. Furthermore, we show that Rabi splitting can be further boosted to 151 meV by increasing the number of layers of ${\mathrm{WS}}_{2}$ and h-$\mathrm{BN}$ film in the nanocavity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助ASD123采纳,获得10
刚刚
风中的宛白完成签到,获得积分20
刚刚
zf123关注了科研通微信公众号
2秒前
ycg发布了新的文献求助10
2秒前
Shrimp完成签到 ,获得积分10
2秒前
3秒前
Anoxia完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
木木发布了新的文献求助10
6秒前
毕十三发布了新的文献求助30
9秒前
9秒前
11秒前
12秒前
共享精神应助Arthur采纳,获得10
12秒前
香蕉觅云应助瞿选葵采纳,获得10
13秒前
13秒前
14秒前
shufessm完成签到,获得积分0
15秒前
木木完成签到,获得积分20
15秒前
大魁发布了新的文献求助10
16秒前
深情安青应助Mio采纳,获得10
16秒前
壁虎君完成签到,获得积分10
17秒前
情怀应助调皮的如凡采纳,获得10
18秒前
19秒前
奋斗的荆发布了新的文献求助10
22秒前
完美世界应助平常的海露采纳,获得10
23秒前
pcm完成签到 ,获得积分10
23秒前
归尘发布了新的文献求助10
26秒前
李海平发布了新的文献求助10
27秒前
27秒前
专注的晋鹏完成签到,获得积分10
29秒前
29秒前
南浔完成签到 ,获得积分10
30秒前
小唐发布了新的文献求助10
33秒前
materials_完成签到,获得积分10
33秒前
34秒前
奋斗的荆完成签到,获得积分10
34秒前
Zz完成签到,获得积分10
36秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462542
求助须知:如何正确求助?哪些是违规求助? 3056077
关于积分的说明 9050722
捐赠科研通 2745731
什么是DOI,文献DOI怎么找? 1506546
科研通“疑难数据库(出版商)”最低求助积分说明 696165
邀请新用户注册赠送积分活动 695677