LSIAN: Exploiting interval interests for session-based recommendation via sparse attention network

计算机科学 联营 期限(时间) 加权 背景(考古学) 会话(web分析) 图形 人工智能 机器学习 理论计算机科学 万维网 生物 物理 放射科 古生物学 医学 量子力学
作者
Xinyu Xiao,Wei Zhou,Junhao Wen
出处
期刊:Information Sciences [Elsevier BV]
卷期号:642: 119138-119138 被引量:2
标识
DOI:10.1016/j.ins.2023.119138
摘要

Session-based recommendation (SBR) recommends the next clicked item to anonymous users. Recent studies utilize graph attention networks for modeling. There exist various problems in these algorithms: First, most of these methods only consider the long-term interests of users, ignoring the short-term interest transfer of users; second, when the graph attention mechanism obtains item weights, irrelevant items are assigned weights, which reduces the weights of related items, resulting in insufficient weight discretization. Third, the last action is taken as the user's final preference, however, this assumption does not necessarily correspond to the user's actual interest. This paper proposes a long- and short-term interest-attention aware network (LSIAN) model. First, we propose a novel time-aware attention mechanism that learns users' short-term interests by considering context and time interval, and utilizes average pooling to represent users' long-term interests. Next, we introduce a context-based adaptive sparse attention mechanism to discover irrelevant items, down-weight irrelevant items through a dynamic loop, and reserve higher weights for related items. Furthermore, we introduce a gated fusion method adaptively integrate the user's long-term and short-term preferences, thereby alleviating the problem of excessive weighting of the last term. Experiments on two public datasets show that LSIAN outperforms state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在下小绿完成签到,获得积分10
刚刚
隐形曼青应助Yu_Chengju采纳,获得10
刚刚
科研通AI2S应助葛力采纳,获得10
1秒前
蜡笔完成签到,获得积分10
1秒前
1秒前
mkb完成签到,获得积分10
1秒前
2秒前
负责紊完成签到,获得积分10
2秒前
怡然云朵发布了新的文献求助10
2秒前
Rubby应助小红的忧伤采纳,获得10
3秒前
搜集达人应助YW采纳,获得10
3秒前
科研乞讨专员完成签到,获得积分10
3秒前
3秒前
tuanyz完成签到,获得积分10
3秒前
3秒前
5秒前
6秒前
6秒前
勤奋的芒果完成签到,获得积分10
6秒前
volition完成签到,获得积分10
7秒前
嫣儿完成签到,获得积分10
7秒前
跳跃的航空完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
Hello应助sci喷涌而出采纳,获得10
7秒前
偷猪剑客发布了新的文献求助10
7秒前
薛然兮完成签到,获得积分10
7秒前
Gilana完成签到,获得积分10
8秒前
Free驳回了所所应助
8秒前
8秒前
小树枝发布了新的文献求助10
8秒前
8秒前
8秒前
王磊发布了新的文献求助10
8秒前
9秒前
9秒前
高挑的幻翠完成签到,获得积分10
9秒前
涟涵发布了新的文献求助10
9秒前
自觉的傥完成签到,获得积分10
10秒前
CMJ完成签到 ,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118