Deep learning collective variables from transition path ensemble

线性判别分析 计算机科学 集体行为 变量(数学) 人工智能 统计物理学 趋同(经济学) 路径(计算) 机器学习 数学 物理 数学分析 社会学 经济 经济增长 程序设计语言 人类学
作者
Dhiman Ray,Enrico Trizio,Michele Parrinello
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:158 (20) 被引量:36
标识
DOI:10.1063/5.0148872
摘要

The study of the rare transitions that take place between long lived metastable states is a major challenge in molecular dynamics simulations. Many of the methods suggested to address this problem rely on the identification of the slow modes of the system, which are referred to as collective variables. Recently, machine learning methods have been used to learn the collective variables as functions of a large number of physical descriptors. Among many such methods, Deep Targeted Discriminant Analysis has proven to be useful. This collective variable is built from data harvested from short unbiased simulations in the metastable basins. Here, we enrich the set of data on which the Deep Targeted Discriminant Analysis collective variable is built by adding data from the transition path ensemble. These are collected from a number of reactive trajectories obtained using the On-the-fly Probability Enhanced Sampling flooding method. The collective variables thus trained lead to more accurate sampling and faster convergence. The performance of these new collective variables is tested on a number of representative examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大菠萝是什么味完成签到,获得积分10
2秒前
zz发布了新的文献求助10
6秒前
JEWEL完成签到,获得积分10
7秒前
饼干发布了新的文献求助10
8秒前
李爱国应助杜本内采纳,获得10
8秒前
唠叨的洋葱完成签到,获得积分10
8秒前
沉香完成签到 ,获得积分10
10秒前
CipherSage应助李小伟采纳,获得10
10秒前
圆锥香蕉应助王也采纳,获得30
11秒前
追寻冰淇淋给123的求助进行了留言
11秒前
打打应助Han采纳,获得10
12秒前
逍遥完成签到,获得积分10
13秒前
JamesPei应助活力的如冬采纳,获得10
13秒前
华仔应助八九采纳,获得10
15秒前
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
千跃应助科研通管家采纳,获得10
15秒前
hang完成签到,获得积分10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
Lionel发布了新的文献求助10
16秒前
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
16秒前
scm应助科研通管家采纳,获得30
16秒前
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得30
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
Lindsay应助科研通管家采纳,获得10
17秒前
千跃应助科研通管家采纳,获得10
17秒前
17秒前
周二完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959467
求助须知:如何正确求助?哪些是违规求助? 3505690
关于积分的说明 11125214
捐赠科研通 3237503
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802859