A CNN-Transformer Hybrid Recognition Approach for sEMG-Based Dynamic Gesture Prediction

人工智能 计算机科学 特征提取 模式识别(心理学) 卷积神经网络 手势识别 光谱图 语音识别 变压器 计算机视觉 手势 工程类 电气工程 电压
作者
Yanhong Liu,Xingyu Li,Lei Yang,Gui‐Bin Bian,Hongnian Yu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:12
标识
DOI:10.1109/tim.2023.3273651
摘要

As a unique physiological electrical signal in the human body, surface electromyography (sEMG) signals always include human movement intention and muscle state. Through the collection of sEMG signals, different gestures can be effectively recognized. At present, the convolutional neural network (CNN) has been widely applied to different gesture recognition systems. However, due to its inherent limitations in global context feature extraction, it exists a certain shortcoming on high-precision prediction tasks. To solve this issue, a CNN-transformer hybrid recognition approach is proposed for high-precision dynamic gesture prediction. In addition, the continuous wavelet transform (CWT) is proposed for to acquire the time-frequency maps. To realize effective feature representation of local features from the time-frequency maps, an attention fusion block (AFB) is proposed to build the deep CNN network branch to effectively extract key channel information and spatial information from local features. Faced with the inherent limitations in global context feature extraction of CNNs, a transformer network branch is proposed to model the global relationship between pixels, called convolution and transformer (CAT) network branch. In addition, a multi-scale feature attention block (MFA) is proposed for effective feature aggregation of local features and global contexts by learning adaptive multi-scale features and suppressing irrelevant scale information. The experimental results on the established multi-channel sEMG signal time-frequency map dataset show that the proposed CNN transformer hybrid recognition network has competitive recognition performance compared with other state-of-the-art recognition networks, and the average recognition speed of each spectrogram on the test set is only 14.7ms. The proposed network can effectively improve network performance and identification efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lch发布了新的文献求助10
刚刚
ddd完成签到,获得积分10
1秒前
单纯契完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
2秒前
lbxlbxlbx完成签到 ,获得积分10
3秒前
Danielle完成签到,获得积分10
3秒前
yyz应助谦让的小姜采纳,获得10
4秒前
7秒前
7秒前
kk完成签到,获得积分10
10秒前
没有逗应助阿呆采纳,获得10
11秒前
hailiangzheng发布了新的文献求助10
13秒前
阿巴阿巴阿巴完成签到,获得积分10
16秒前
科研通AI2S应助宗语雪采纳,获得10
17秒前
一煽情完成签到,获得积分10
17秒前
18秒前
许多多完成签到,获得积分10
18秒前
搜集达人应助谦让的小姜采纳,获得10
19秒前
yzlsci发布了新的文献求助260
20秒前
21秒前
1989发布了新的文献求助10
23秒前
24秒前
24秒前
小不溜完成签到,获得积分10
24秒前
25秒前
立里完成签到,获得积分10
26秒前
慕青应助阿巴阿巴阿巴采纳,获得10
26秒前
万能图书馆应助LIKO采纳,获得10
27秒前
害羞聋五发布了新的文献求助10
28秒前
852应助Su采纳,获得10
30秒前
小萌完成签到,获得积分10
30秒前
31秒前
大个应助踏实的从寒采纳,获得10
32秒前
GQ完成签到,获得积分10
32秒前
安若完成签到 ,获得积分20
33秒前
33秒前
33秒前
xiaoyu完成签到,获得积分10
34秒前
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053