分解水
材料科学
钙钛矿(结构)
卤化物
光电流
带隙
拉曼光谱
X射线光电子能谱
无机化学
化学工程
化学
光电子学
光催化
光学
结晶学
催化作用
生物化学
物理
工程类
作者
Pardhasaradhi Nandigana,S. Pari,D. Sujatha,M. Shidhin,C. Jeyabharathi,Subhendu K. Panda
标识
DOI:10.1002/slct.202204731
摘要
Abstract Lead‐free halide perovskites have been developed as an alternative to lead‐based perovskite materials. Bi‐based halide perovskites Cs 2 AgBiCl 6 and Cs 3 Bi 2 Cl 9 are synthesized through the hydrothermal method and investigated their photoelectrochemical properties toward water splitting. The formation of the halide perovskites is confirmed by XRD, Raman spectroscopy, SEM, EDAX and XPS techniques. Optical properties are measured by UV‐Vis spectroscopy and Mott‐Schottky plots confirmed that both the materials are p‐type semiconductors with a bandgap of 2.72 eV and 3.05 eV for Cs 2 AgBiCl 6 and Cs 3 Bi 2 Cl 9 respectively. The photocurrent density of water oxidation on Cs 2 AgBiCl 6 and Cs 3 Bi 2 Cl 9 are 10 μA/cm 2 and 6 μA/cm 2 at 0.9 V (vs Ag/AgCl) respectively and both are highly stable over 300 sec under chopped condition and also the photoelectrocatalyst stable over 10 h during the chronoamperometry studies. The experimental data shows that the photoelectrochemical water splitting activity of Cs 2 AgBiCl 6 is better than Cs 3 Bi 2 Cl 9 . This work suggests these materials will be a potential candidate for green hydrogen and oxygen production using solar energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI