Edge-enhanced Global Disentangled Graph Neural Network for Sequential Recommendation

计算机科学 推荐系统 GSM演进的增强数据速率 图形 自编码 编码器 人工智能 机器学习 人工神经网络 代表(政治) 关系(数据库) 数据挖掘 理论计算机科学 操作系统 政治 法学 政治学
作者
Yunyi Li,Yongjing Hao,Pengpeng Zhao,Guanfeng Liu,Yanchi Liu,Victor S. Sheng,Xiaofang Zhou
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (6): 1-22 被引量:4
标识
DOI:10.1145/3577928
摘要

Sequential recommendation has been a widely popular topic of recommender systems. Existing works have contributed to enhancing the prediction ability of sequential recommendation systems based on various methods, such as recurrent networks and self-attention mechanisms. However, they fail to discover and distinguish various relationships between items, which could be underlying factors which motivate user behaviors. In this article, we propose an Edge-Enhanced Global Disentangled Graph Neural Network (EGD-GNN) model to capture the relation information between items for global item representation and local user intention learning. At the global level, we build a global-link graph over all sequences to model item relationships. Then a channel-aware disentangled learning layer is designed to decompose edge information into different channels, which can be aggregated to represent the target item from its neighbors. At the local level, we apply a variational auto-encoder framework to learn user intention over the current sequence. We evaluate our proposed method on three real-world datasets. Experimental results show that our model can get a crucial improvement over state-of-the-art baselines and is able to distinguish item features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
领导范儿应助小张采纳,获得10
1秒前
2秒前
2秒前
拼搏山槐发布了新的文献求助10
3秒前
QYPANG发布了新的文献求助10
3秒前
3秒前
Suzanne完成签到,获得积分10
3秒前
CR7应助犬狗狗采纳,获得20
3秒前
卡莎发布了新的文献求助10
3秒前
4秒前
乐乐应助成就的雪莲采纳,获得10
4秒前
榛糕李完成签到,获得积分10
4秒前
CodeCraft应助clocksoar采纳,获得10
4秒前
4秒前
Owen应助科研小白发发发采纳,获得10
5秒前
Curry发布了新的文献求助10
6秒前
Brian发布了新的文献求助10
7秒前
7秒前
8秒前
Rondab应助唐唐采纳,获得10
10秒前
10秒前
标致书易完成签到,获得积分10
10秒前
zx1211发布了新的文献求助10
10秒前
FashionBoy应助平安采纳,获得10
10秒前
哈哈哈发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
王小嘻完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
yznfly应助巴不采纳,获得100
13秒前
量子星尘发布了新的文献求助10
14秒前
她与星辰皆失完成签到 ,获得积分10
15秒前
lucky完成签到,获得积分10
15秒前
刘欣怡发布了新的文献求助10
16秒前
可乐完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958929
求助须知:如何正确求助?哪些是违规求助? 3505199
关于积分的说明 11122925
捐赠科研通 3236708
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871444
科研通“疑难数据库(出版商)”最低求助积分说明 802794