Quantifying the effects of 2D/3D urban landscape patterns on land surface temperature: A perspective from cities of different sizes

不透水面 北京 城市化 地理 自然地理学 环境科学 城市热岛 城市形态 城市规划 气象学 中国 生态学 生物 考古
作者
Hongchao Xu,Chunlin Li,Yuanman Hu,Shuai Li,Ruixue Kong,Zhibin Zhang
出处
期刊:Building and Environment [Elsevier]
卷期号:233: 110085-110085 被引量:31
标识
DOI:10.1016/j.buildenv.2023.110085
摘要

With the continuous development of urbanization, two-dimensional (2D) landscape pattern is insufficient to explain the complex urban thermal phenomenon, while three-dimensional (3D) urban composition directly affects the process of surface energy exchange and becomes an important influencing factor in regard to land surface temperature (LST). There have been some studies on the relationship between 2D/3D urban patterns and LST, however, there are relatively few studies on the effects of 2D/3D urban landscape on LST in cities of different sizes. In this research, the relationship of 2D/3D urban patterns and LST in three cities (Beijing, Shijiazhuang and Cangzhou) of different sizes were analyzed by using the boosted regression tree model. The results were as follows: 1) With the increase in city size, LST gradually increased in summer and decreased in winter. 2) The larger the size of the city was, the greater the number of factors that significantly affected LST (p < 0.05). 3) In spring, summer and autumn, volume of tree (TV), mean tree height (MTH) and the largest patch index of impervious surface (LPI_IS) had a high relative influence, and the average total relative influences of these three metrics were 80.08%, 78.99% and 45.14%, respectively. 4)There was a significant negative correlation between TV and LST, a positive correlation between LPI_IS and LST and a combination of positive and negative correlations between MTH and LST. The study of the effects of 2D and 3D urban morphology on LST could help urban planners and managers create more scientific urban planning and development management measures to mitigate urban thermal environment problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助yyyyy语言采纳,获得10
1秒前
土里刨星星的鱼完成签到,获得积分20
1秒前
Ava应助sun采纳,获得30
3秒前
miss完成签到,获得积分10
4秒前
hu完成签到 ,获得积分10
5秒前
mathmotive完成签到,获得积分10
6秒前
白大褂完成签到,获得积分10
7秒前
7秒前
7秒前
小马甲应助孙淳采纳,获得10
9秒前
9秒前
科研通AI5应助二二二采纳,获得10
9秒前
赘婿应助尘林采纳,获得10
10秒前
HPP123完成签到,获得积分10
12秒前
13秒前
YYJ25发布了新的文献求助10
14秒前
liyuchen发布了新的文献求助10
14秒前
侦察兵发布了新的文献求助10
14秒前
16秒前
Owen应助TT采纳,获得10
16秒前
kid1912发布了新的文献求助50
16秒前
孙淳发布了新的文献求助10
20秒前
21秒前
21秒前
伯赏诗霜发布了新的文献求助10
21秒前
22秒前
22秒前
程哲瀚完成签到,获得积分10
22秒前
Brennan完成签到,获得积分10
23秒前
24秒前
24秒前
笨笨善若发布了新的文献求助10
25秒前
25秒前
26秒前
樘樘完成签到,获得积分10
26秒前
一个有点长的序完成签到 ,获得积分10
27秒前
孙淳完成签到,获得积分10
28秒前
28秒前
YYJ25发布了新的文献求助10
29秒前
Jzhang应助tmpstlml采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849