激光线宽
光学
谐振器
激光器
材料科学
光电子学
二极管
注入锁定
物理
出处
期刊:Optics Letters
[The Optical Society]
日期:2023-02-06
卷期号:48 (5): 1323-1323
被引量:13
摘要
A narrow linewidth laser (NLL) of high frequency stability and small form factor is essential to enable applications in long-range sensing, quantum information, and atomic clocks. Various high performance NLLs have been demonstrated by Pound-Drever-Hall (PDH) lock or self-injection lock (SIL) of a seed laser to a vacuum-stabilized Fabry-Perot (FP) cavity of ultrahigh quality (Q) factor. However, they are often complicated lab setups due to the sophisticated stabilizing system and locking electronics. Here we report a compact NLL of 67-mL volume, realized by SIL of a diode laser to a miniature FP cavity of 7.7 × 108 Q and 0.5-mL volume, bypassing table-size vacuum as well as thermal and vibration isolation. We characterized the NLL with a self-delayed heterodyne system, where the Lorentzian linewidth reaches 60 mHz and the integrated linewidth is ∼80 Hz. The frequency noise performance exceeds that of commercial NLLs and recently reported hybrid-integrated NLL realized by SIL to high-Q on-chip ring resonators. Our work marks a major step toward a field-deployable NLL of superior performance using an ultrahigh-Q FP cavity.
科研通智能强力驱动
Strongly Powered by AbleSci AI