A Deep Learning System to Predict Recurrence and Disability Outcomes in Patients with Transient Ischemic Attack or Ischemic Stroke

医学 冲程(发动机) 接收机工作特性 内科学 弗雷明翰风险评分 心脏病学 缺血性中风 缺血 疾病 机械工程 工程类
作者
Jing Jing,Ziyang Liu,Hao Guan,Wanlin Zhu,Zhe Zhang,Xia Meng,Jian Cheng,Yuesong Pan,Yong Jiang,Yilong Wang,Haijun Niu,Xingquan Zhao,Wei Wen,Jinxi Lin,Wei Li,Hao Li,Perminder S. Sachdev,Tao Liu,Zixiao Li,Dacheng Tao,Yongjun Wang
出处
期刊:Advanced intelligent systems [Wiley]
卷期号:5 (4) 被引量:1
标识
DOI:10.1002/aisy.202200240
摘要

Ischemic strokes (IS) and transient ischemic attacks (TIA) account for approximately 80% of all strokes and are leading causes of death worldwide. Assessing the risk of recurrence or functional impairment in IS and TIA patients is essential to both acute phase treatment and secondary prevention. Current risk prediction systems that rely on clinical parameters alone without leveraging imaging data have only modest performance. Herein, a deep learning‐based risk prediction system (RPS) is developed to predict the probability of stroke recurrence or disability (i.e., deep‐learning stroke recurrence risk score, SRR score). Then, Kaplan–Meier analysis to evaluate the ability of SRR score to stratify patients at stroke recurrence risk is discussed. Using 15 166 Third China National Stroke Registry (CNSR‐III) cases, the RPS's receiver operating characteristic curve (AUC) values of 0.850 for 14 day TIA recurrence prediction and 0.837 for 3 month IS disability prediction are used. Among patients deemed high risk by SRR score, 22.9% and 24.4% of individuals with TIA and IS respectively have stroke recurrence within 1 year, which are significantly higher than the rates in low‐risk individuals. Deep learning‐based RPS can outperform conventional risk scores and has the potential to assist accurate prognostication in stroke patients to optimize management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
丘比特应助周周采纳,获得10
2秒前
LHD完成签到,获得积分20
3秒前
jade发布了新的文献求助10
3秒前
6秒前
7秒前
CipherSage应助苏满天采纳,获得10
8秒前
lumei661314完成签到,获得积分10
9秒前
深情安青应助Youth采纳,获得10
9秒前
嘻嘻嘻发布了新的文献求助10
10秒前
袁妞妞发布了新的文献求助10
12秒前
包凡之发布了新的文献求助30
13秒前
jade完成签到,获得积分10
14秒前
15秒前
斯文败类应助袁妞妞采纳,获得10
17秒前
19秒前
小李不爱搞科研完成签到,获得积分10
21秒前
25秒前
周周发布了新的文献求助10
25秒前
25秒前
26秒前
27秒前
28秒前
大个应助123采纳,获得10
29秒前
29秒前
fucccboi发布了新的文献求助10
29秒前
狒狒完成签到,获得积分10
31秒前
苏满天发布了新的文献求助10
32秒前
华仔应助一只东北鸟采纳,获得10
32秒前
吃手手发布了新的文献求助10
33秒前
xjcy应助乙酸乙酯会挥发采纳,获得10
34秒前
Dr_zsc发布了新的文献求助10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161200
求助须知:如何正确求助?哪些是违规求助? 2812600
关于积分的说明 7895715
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316018
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112