亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning System to Predict Recurrence and Disability Outcomes in Patients with Transient Ischemic Attack or Ischemic Stroke

医学 冲程(发动机) 接收机工作特性 内科学 弗雷明翰风险评分 心脏病学 缺血性中风 缺血 疾病 机械工程 工程类
作者
Jing Jing,Ziyang Liu,Hao Guan,Wanlin Zhu,Zhe Zhang,Xia Meng,Jian Cheng,Yuesong Pan,Yong Jiang,Yilong Wang,Haijun Niu,Xingquan Zhao,Wei Wen,Jinxi Lin,Wei Li,Hao Li,Perminder S. Sachdev,Tao Liu,Zixiao Li,Dacheng Tao
出处
期刊:Advanced intelligent systems [Wiley]
卷期号:5 (4) 被引量:6
标识
DOI:10.1002/aisy.202200240
摘要

Ischemic strokes (IS) and transient ischemic attacks (TIA) account for approximately 80% of all strokes and are leading causes of death worldwide. Assessing the risk of recurrence or functional impairment in IS and TIA patients is essential to both acute phase treatment and secondary prevention. Current risk prediction systems that rely on clinical parameters alone without leveraging imaging data have only modest performance. Herein, a deep learning‐based risk prediction system (RPS) is developed to predict the probability of stroke recurrence or disability (i.e., deep‐learning stroke recurrence risk score, SRR score). Then, Kaplan–Meier analysis to evaluate the ability of SRR score to stratify patients at stroke recurrence risk is discussed. Using 15 166 Third China National Stroke Registry (CNSR‐III) cases, the RPS's receiver operating characteristic curve (AUC) values of 0.850 for 14 day TIA recurrence prediction and 0.837 for 3 month IS disability prediction are used. Among patients deemed high risk by SRR score, 22.9% and 24.4% of individuals with TIA and IS respectively have stroke recurrence within 1 year, which are significantly higher than the rates in low‐risk individuals. Deep learning‐based RPS can outperform conventional risk scores and has the potential to assist accurate prognostication in stroke patients to optimize management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
大晨发布了新的文献求助10
11秒前
lili发布了新的文献求助10
11秒前
17秒前
lili完成签到,获得积分20
32秒前
cc完成签到,获得积分10
34秒前
1分钟前
海绵宝宝完成签到 ,获得积分10
1分钟前
Jasper应助阳光的星月采纳,获得10
1分钟前
TXZ06完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
打打应助朴素海亦采纳,获得10
2分钟前
方汀应助朴素海亦采纳,获得10
2分钟前
3分钟前
dd完成签到,获得积分10
3分钟前
3分钟前
开朗大雁完成签到 ,获得积分10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
荷兰香猪完成签到,获得积分10
4分钟前
4分钟前
4分钟前
阳光的星月完成签到,获得积分10
4分钟前
研友_8RyzBZ完成签到,获得积分20
4分钟前
4分钟前
4分钟前
huahuaaixuexi完成签到,获得积分10
4分钟前
4分钟前
情怀应助成成鹅了采纳,获得10
4分钟前
苗龙伟完成签到 ,获得积分10
4分钟前
dd发布了新的文献求助200
5分钟前
852应助成成鹅了采纳,获得30
5分钟前
林妹妹完成签到 ,获得积分10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
5分钟前
冷酷的如松完成签到,获得积分10
5分钟前
5分钟前
成成鹅了发布了新的文献求助10
5分钟前
5分钟前
5分钟前
丘比特应助科研通管家采纳,获得30
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107