When a machine detects student reasoning: a review of machine learning-based formative assessment of mechanistic reasoning

形成性评价 印为红字的 构造(python库) 计算机科学 过程(计算) 定性推理 资源(消歧) 科学推理 管理科学 人工智能 数学教育 心理学 工程类 计算机网络 操作系统 程序设计语言
作者
Paul P. Martin,Nicole Graulich
出处
期刊:Chemistry Education. Research and Practice [The Royal Society of Chemistry]
卷期号:24 (2): 407-427 被引量:16
标识
DOI:10.1039/d2rp00287f
摘要

In chemistry, reasoning about the underlying mechanisms of observed phenomena lies at the core of scientific practices. The process of uncovering, analyzing, and interpreting mechanisms for explanations and predictions requires a specific kind of reasoning: mechanistic reasoning. Several frameworks have already been developed that capture the aspects of mechanistic reasoning to support its formative assessment. However, evaluating mechanistic reasoning in students’ open responses is a time- and resource-intense, complex, and challenging task when performed by hand. Emerging technologies like machine learning (ML) can automate and advance the formative assessment of mechanistic reasoning. Due to its usefulness, ML has already been applied to assess mechanistic reasoning in several research projects. This review focuses on 20 studies dealing with ML in chemistry education research capturing mechanistic reasoning. We developed a six-category framework based on the evidence-centered design (ECD) approach to evaluate these studies in terms of pedagogical purpose , rubric design , construct assessment , validation approaches , prompt structure , and sample heterogeneity . Contemporary effective practices of ML-based formative assessment of mechanistic reasoning in chemistry education are emphasized to guide future projects by these practices and to overcome challenges. Ultimately, we conclude that ML has advanced replicating, automating, and scaling human scoring, while it has not yet transformed the quality of evidence drawn from formative assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助renyi97采纳,获得10
1秒前
1秒前
wwz应助姚琳采纳,获得10
1秒前
聪明的平萱完成签到,获得积分10
2秒前
安静幻枫应助贝肯妮采纳,获得10
2秒前
kkk完成签到,获得积分10
2秒前
zhouleiwang完成签到,获得积分10
2秒前
酷波er应助娟儿采纳,获得10
3秒前
3秒前
hjh发布了新的文献求助10
4秒前
丘比特应助Jerome采纳,获得10
4秒前
摩卡发布了新的文献求助10
5秒前
脑洞疼应助JIA采纳,获得10
5秒前
Xuefei发布了新的文献求助10
5秒前
5秒前
iuv发布了新的文献求助10
5秒前
AaronW应助Dphile采纳,获得10
5秒前
温暖平文完成签到,获得积分10
5秒前
5秒前
慕青应助ferritin采纳,获得10
6秒前
个性的紫菜应助自然芯采纳,获得20
7秒前
7秒前
7秒前
香蕉觅云应助百宝采纳,获得20
8秒前
jyjy666完成签到,获得积分10
9秒前
YH完成签到,获得积分10
9秒前
贤惠的黑裤完成签到,获得积分10
9秒前
9秒前
田様应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得20
10秒前
华仔应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得50
10秒前
刻苦熊猫应助科研通管家采纳,获得10
10秒前
yufanhui应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
yufanhui应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160253
求助须知:如何正确求助?哪些是违规求助? 2811323
关于积分的说明 7891987
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315488
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038