A novel basement membrane-related gene signature for prognosis of lung adenocarcinomas

比例危险模型 腺癌 肿瘤科 基因 免疫系统 内科学 单变量 生存分析 多元统计 肺癌 多元分析 生物 单变量分析 医学 免疫学 癌症 遗传学 计算机科学 机器学习
作者
Zhenxing Zhang,Haoran Zhu,Xiaojun Wang,Shanan Lin,Chenjin Ruan,Qiang Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:154: 106597-106597 被引量:20
标识
DOI:10.1016/j.compbiomed.2023.106597
摘要

Lung adenocarcinoma (LUAD) remains a global health concern with its poor prognosis and high mortality. Whether tumor cells invade through the basement membrane (BM) is the key factor to determine the prognosis of LUAD. This study aimed to identify the BM-related gene signatures to improve the overall prognosis of LUAD.A series of bioinformatics analyses were conducted based on TCGA and GEO datasets. Unsupervised consistent cluster analysis was performed, and 500 LUAD patients were assigned to two different groups according to expressions of 222 BM-related genes. The differentially expressed genes (DEGs) between the two clusters were identified, and Lasso regression, ROC curve, univariate and multivariate Cox regression analyses and enrichment analysis were conducted. Besides, ssGSEA, CIBERSORT and ESTIMATE algorithmwere were employed to understand the relationship between the tumor microenvironment (TME) and risk scores. Moreover, single cell clustering and trajectory analyses were performed to further understand the significance of BM-related genes. Finally, qRT-PCR was used to verify the prognosis model.A total of 31 prognostic BM-related genes were determined for LUAD, and a novel 17-mRNA prognostic model named BMsocre was successfully established to predict the overall survival of LUAD patients. The high BMscore group indicated worse prognosis. Seventeen DEGs were enriched mainly in metabolism, ECM-receptor interaction and immune response. In addition, the high-risk group showed higher TMB and lower immune score. The low-risk group had a better immunotherapeutic response where immune escape was less likely. The BMscore model was verified in our patient cohort. Furthermore, NELL2 was mainly expressed in clusters of T cells, and was identified to play a critical role in T-cell differentiation.A novel BMscore model was successfully established and might be effective for providing guidance to LUAD therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
rossliyi发布了新的文献求助10
3秒前
zxinyi完成签到 ,获得积分10
3秒前
1111完成签到,获得积分10
3秒前
Luna发布了新的文献求助10
4秒前
4秒前
OL发布了新的文献求助10
5秒前
乐乐应助文泽采纳,获得10
8秒前
8秒前
瑶瑶发布了新的文献求助10
9秒前
邵辛完成签到,获得积分10
9秒前
嘻嘻哈哈完成签到 ,获得积分10
10秒前
OL完成签到,获得积分20
13秒前
haha发布了新的文献求助10
14秒前
瑶瑶完成签到,获得积分10
14秒前
九九030211完成签到,获得积分20
15秒前
欻欻发布了新的文献求助10
15秒前
高贵的宛亦完成签到,获得积分10
16秒前
16秒前
周mm发布了新的文献求助10
17秒前
18秒前
星星关注了科研通微信公众号
18秒前
帅气的小兔子完成签到 ,获得积分10
20秒前
微小发布了新的文献求助10
20秒前
小丸子完成签到 ,获得积分10
21秒前
guang5210完成签到,获得积分10
21秒前
22秒前
传奇3应助伊洛采纳,获得10
23秒前
所所应助灵巧冥采纳,获得10
23秒前
24秒前
林星应助cc采纳,获得30
25秒前
科研通AI2S应助欻欻采纳,获得10
25秒前
haha完成签到,获得积分10
27秒前
小乌龟完成签到 ,获得积分10
27秒前
赘婿应助jianmin采纳,获得10
27秒前
27秒前
DIDIDI完成签到 ,获得积分10
28秒前
微小完成签到,获得积分20
28秒前
马小粒完成签到,获得积分10
30秒前
小蘑菇应助乐山乐水采纳,获得10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140824
求助须知:如何正确求助?哪些是违规求助? 2791710
关于积分的说明 7800164
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302313
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210