A novel basement membrane-related gene signature for prognosis of lung adenocarcinomas

比例危险模型 腺癌 肿瘤科 基因 免疫系统 内科学 单变量 生存分析 多元统计 肺癌 多元分析 生物 单变量分析 医学 免疫学 癌症 遗传学 计算机科学 机器学习
作者
Zhenxing Zhang,Haoran Zhu,Xiaojun Wang,Shanan Lin,Chenjin Ruan,Qiang Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:154: 106597-106597 被引量:27
标识
DOI:10.1016/j.compbiomed.2023.106597
摘要

Lung adenocarcinoma (LUAD) remains a global health concern with its poor prognosis and high mortality. Whether tumor cells invade through the basement membrane (BM) is the key factor to determine the prognosis of LUAD. This study aimed to identify the BM-related gene signatures to improve the overall prognosis of LUAD.A series of bioinformatics analyses were conducted based on TCGA and GEO datasets. Unsupervised consistent cluster analysis was performed, and 500 LUAD patients were assigned to two different groups according to expressions of 222 BM-related genes. The differentially expressed genes (DEGs) between the two clusters were identified, and Lasso regression, ROC curve, univariate and multivariate Cox regression analyses and enrichment analysis were conducted. Besides, ssGSEA, CIBERSORT and ESTIMATE algorithmwere were employed to understand the relationship between the tumor microenvironment (TME) and risk scores. Moreover, single cell clustering and trajectory analyses were performed to further understand the significance of BM-related genes. Finally, qRT-PCR was used to verify the prognosis model.A total of 31 prognostic BM-related genes were determined for LUAD, and a novel 17-mRNA prognostic model named BMsocre was successfully established to predict the overall survival of LUAD patients. The high BMscore group indicated worse prognosis. Seventeen DEGs were enriched mainly in metabolism, ECM-receptor interaction and immune response. In addition, the high-risk group showed higher TMB and lower immune score. The low-risk group had a better immunotherapeutic response where immune escape was less likely. The BMscore model was verified in our patient cohort. Furthermore, NELL2 was mainly expressed in clusters of T cells, and was identified to play a critical role in T-cell differentiation.A novel BMscore model was successfully established and might be effective for providing guidance to LUAD therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Catherine发布了新的文献求助10
3秒前
酸菜萌萌鱼完成签到,获得积分10
4秒前
耍酷的梦桃完成签到,获得积分10
5秒前
谦让的含海完成签到,获得积分10
5秒前
jaytotti完成签到,获得积分10
6秒前
7秒前
抹茶拿铁加奶砖完成签到 ,获得积分10
7秒前
chengcheng完成签到,获得积分10
9秒前
冷静丸子完成签到 ,获得积分10
9秒前
111完成签到 ,获得积分10
10秒前
莲枳榴莲发布了新的文献求助10
10秒前
li完成签到,获得积分10
10秒前
Who1990完成签到,获得积分10
13秒前
wanci应助搞怪元彤采纳,获得10
14秒前
犹豫代曼完成签到,获得积分10
15秒前
云烟完成签到 ,获得积分10
15秒前
鱼羊完成签到,获得积分10
16秒前
崖涯完成签到 ,获得积分10
16秒前
三愿完成签到 ,获得积分10
17秒前
小甜完成签到,获得积分10
19秒前
热心的流沙完成签到,获得积分10
19秒前
一颗小洋葱完成签到 ,获得积分10
20秒前
Anna完成签到 ,获得积分10
20秒前
十年完成签到 ,获得积分10
20秒前
calmxp完成签到,获得积分10
21秒前
Loooong完成签到,获得积分0
21秒前
wd完成签到,获得积分10
21秒前
长安完成签到,获得积分10
21秒前
alho完成签到 ,获得积分10
22秒前
史迪仔完成签到,获得积分10
23秒前
DanaLin完成签到,获得积分10
23秒前
11完成签到 ,获得积分20
23秒前
科研小白完成签到,获得积分10
23秒前
故意的傲柏完成签到 ,获得积分10
23秒前
橘子海完成签到,获得积分10
24秒前
momo完成签到,获得积分10
26秒前
CCC完成签到,获得积分10
26秒前
搞怪元彤完成签到,获得积分10
28秒前
wjzhan完成签到,获得积分10
29秒前
拼搏绿柳完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256478
求助须知:如何正确求助?哪些是违规求助? 4418730
关于积分的说明 13753082
捐赠科研通 4291913
什么是DOI,文献DOI怎么找? 2355182
邀请新用户注册赠送积分活动 1351622
关于科研通互助平台的介绍 1312330