HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery

概括性 计算机科学 电池(电) 健康状况 人工神经网络 人工智能 特征(语言学) 数据挖掘 机器学习 功率(物理) 心理学 物理 语言学 哲学 量子力学 心理治疗师
作者
Mingyu Gao,Zhengyi Bao,Chunxiang Zhu,Jiahao Jiang,Zhiwei He,Zhekang Dong,Yining Song
出处
期刊:Energy Reports [Elsevier BV]
卷期号:9: 2577-2590 被引量:6
标识
DOI:10.1016/j.egyr.2023.01.109
摘要

Accurate estimating the state of health (SOH) of lithium-ion battery plays a significant role in the safe operation of electric vehicles. With the development of deep learning, neural network-based methods have attracted much attention from researchers. While most of the existing SOH estimation methods are built by a single network, failing to sufficiently extract data information, and thus leading to the limited accuracy and generality (i.e., such a single network makes it difficult to estimate the SOH of battery, with different types and working conditions). Towards this issue, a novel hybrid network, called HFCM (Hierarchical Feature Coupled Module)-LSTM (Long–short-term memory), is designed to fully extract the original data information, making it more accurate to estimate the SOH of battery, with different types and working conditions. Specifically, the proposed HFCM-LSTM mainly consists of two components, HCFM and LSTM. The HCFM is proposed to comprehensively extract the original data feature information from the original samples. On the other hand, following the HFCM, a LSTM module is employed to model time series information. Based on this HFCM-LSTM network, the data obtained directly from the battery are fed into the model as input, enabling an end-to-end SOH estimation of the battery. A series of experiments are conducted on both NASA dataset and Oxford dataset, the experimental results demonstrate that the proposed SOH estimation algorithm outperforms several existing state-of-the-art methods, in terms of accuracy and generality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
1秒前
流星雨完成签到 ,获得积分10
2秒前
认真的冬易完成签到 ,获得积分10
3秒前
香蕉觅云应助Janus采纳,获得10
4秒前
年少轻狂最情深完成签到 ,获得积分10
4秒前
田様应助Zhuyin采纳,获得10
4秒前
4秒前
Fengzhen007完成签到,获得积分10
5秒前
只影有你完成签到,获得积分10
5秒前
一粟的粉r完成签到 ,获得积分10
6秒前
Only完成签到 ,获得积分10
7秒前
登登完成签到,获得积分10
8秒前
犹豫的若完成签到,获得积分10
8秒前
8秒前
束玲玲完成签到,获得积分10
10秒前
11秒前
哎呀呀完成签到,获得积分10
12秒前
宇宙飞船2436完成签到,获得积分10
12秒前
14秒前
pig120完成签到 ,获得积分10
14秒前
科研通AI5应助整齐的手机采纳,获得10
15秒前
16秒前
勤劳太阳完成签到,获得积分10
17秒前
萧白竹发布了新的文献求助10
17秒前
尊敬寒松完成签到 ,获得积分10
17秒前
Jasper应助科研通管家采纳,获得10
18秒前
18秒前
Ava应助科研通管家采纳,获得10
18秒前
19秒前
归于晏完成签到,获得积分10
19秒前
慕容飞凤完成签到,获得积分0
19秒前
hahaha发布了新的文献求助10
19秒前
科研小lese完成签到,获得积分10
20秒前
pilot完成签到,获得积分10
22秒前
英俊的铭应助斯信荣采纳,获得10
23秒前
土木科研小灵通应助曾峥采纳,获得10
24秒前
Zhangtao完成签到,获得积分10
24秒前
虚幻的亦旋完成签到,获得积分10
25秒前
鳈sir完成签到,获得积分10
25秒前
易吴鱼完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927178
求助须知:如何正确求助?哪些是违规求助? 4196564
关于积分的说明 13033074
捐赠科研通 3969141
什么是DOI,文献DOI怎么找? 2175307
邀请新用户注册赠送积分活动 1192384
关于科研通互助平台的介绍 1103053