HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery

概括性 计算机科学 电池(电) 健康状况 人工神经网络 人工智能 特征(语言学) 数据挖掘 机器学习 功率(物理) 心理学 物理 语言学 哲学 量子力学 心理治疗师
作者
Mingyu Gao,Zhengyi Bao,Chunxiang Zhu,Jiahao Jiang,Zhiwei He,Zhekang Dong,Yining Song
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 2577-2590 被引量:6
标识
DOI:10.1016/j.egyr.2023.01.109
摘要

Accurate estimating the state of health (SOH) of lithium-ion battery plays a significant role in the safe operation of electric vehicles. With the development of deep learning, neural network-based methods have attracted much attention from researchers. While most of the existing SOH estimation methods are built by a single network, failing to sufficiently extract data information, and thus leading to the limited accuracy and generality (i.e., such a single network makes it difficult to estimate the SOH of battery, with different types and working conditions). Towards this issue, a novel hybrid network, called HFCM (Hierarchical Feature Coupled Module)-LSTM (Long–short-term memory), is designed to fully extract the original data information, making it more accurate to estimate the SOH of battery, with different types and working conditions. Specifically, the proposed HFCM-LSTM mainly consists of two components, HCFM and LSTM. The HCFM is proposed to comprehensively extract the original data feature information from the original samples. On the other hand, following the HFCM, a LSTM module is employed to model time series information. Based on this HFCM-LSTM network, the data obtained directly from the battery are fed into the model as input, enabling an end-to-end SOH estimation of the battery. A series of experiments are conducted on both NASA dataset and Oxford dataset, the experimental results demonstrate that the proposed SOH estimation algorithm outperforms several existing state-of-the-art methods, in terms of accuracy and generality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
纪外绣发布了新的文献求助30
2秒前
2秒前
zyy发布了新的文献求助10
2秒前
顺利汉堡发布了新的文献求助10
3秒前
Joyce发布了新的文献求助30
3秒前
Dylan发布了新的文献求助10
3秒前
Muncy完成签到 ,获得积分10
4秒前
4秒前
jing发布了新的文献求助10
4秒前
一个人的表情完成签到,获得积分10
4秒前
wenxian完成签到,获得积分10
4秒前
7ouo发布了新的文献求助10
5秒前
5秒前
watgos完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
火星上的万天完成签到,获得积分10
7秒前
Sandy11发布了新的文献求助200
7秒前
滑倩影完成签到,获得积分10
7秒前
凶狠的储完成签到,获得积分10
8秒前
9秒前
月月应助sinlar采纳,获得10
9秒前
10秒前
10秒前
Cosmos关注了科研通微信公众号
10秒前
11秒前
naturehome完成签到,获得积分10
11秒前
11秒前
刘丰铭发布了新的文献求助10
11秒前
DIPLO发布了新的文献求助10
11秒前
11秒前
假装学霸完成签到 ,获得积分10
12秒前
一一完成签到 ,获得积分10
12秒前
斯文败类应助流光采纳,获得10
12秒前
13秒前
13秒前
huohua完成签到 ,获得积分10
13秒前
fang完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809