HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery

概括性 计算机科学 电池(电) 健康状况 人工神经网络 人工智能 特征(语言学) 数据挖掘 机器学习 功率(物理) 心理学 物理 语言学 哲学 量子力学 心理治疗师
作者
Mingyu Gao,Zhengyi Bao,Chunxiang Zhu,Jiahao Jiang,Zhiwei He,Zhekang Dong,Yining Song
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 2577-2590 被引量:6
标识
DOI:10.1016/j.egyr.2023.01.109
摘要

Accurate estimating the state of health (SOH) of lithium-ion battery plays a significant role in the safe operation of electric vehicles. With the development of deep learning, neural network-based methods have attracted much attention from researchers. While most of the existing SOH estimation methods are built by a single network, failing to sufficiently extract data information, and thus leading to the limited accuracy and generality (i.e., such a single network makes it difficult to estimate the SOH of battery, with different types and working conditions). Towards this issue, a novel hybrid network, called HFCM (Hierarchical Feature Coupled Module)-LSTM (Long–short-term memory), is designed to fully extract the original data information, making it more accurate to estimate the SOH of battery, with different types and working conditions. Specifically, the proposed HFCM-LSTM mainly consists of two components, HCFM and LSTM. The HCFM is proposed to comprehensively extract the original data feature information from the original samples. On the other hand, following the HFCM, a LSTM module is employed to model time series information. Based on this HFCM-LSTM network, the data obtained directly from the battery are fed into the model as input, enabling an end-to-end SOH estimation of the battery. A series of experiments are conducted on both NASA dataset and Oxford dataset, the experimental results demonstrate that the proposed SOH estimation algorithm outperforms several existing state-of-the-art methods, in terms of accuracy and generality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐乐乐乐乐应助菜狗采纳,获得10
刚刚
1秒前
苏鱼完成签到 ,获得积分10
3秒前
啾啾发布了新的文献求助10
4秒前
4秒前
小虎完成签到,获得积分10
9秒前
9秒前
田様应助123采纳,获得10
11秒前
海带完成签到 ,获得积分10
11秒前
李爱国应助林克采纳,获得10
12秒前
温暖果汁发布了新的文献求助10
12秒前
13秒前
这几个字真的有十个字完成签到,获得积分10
13秒前
13秒前
啾啾完成签到,获得积分10
14秒前
16秒前
16秒前
17秒前
18秒前
乐乐应助呱呱采纳,获得10
18秒前
19秒前
22发布了新的文献求助10
20秒前
田様应助ste11ar采纳,获得20
21秒前
科目三应助林克采纳,获得10
21秒前
22秒前
尾巴发布了新的文献求助10
23秒前
天天快乐应助温暖果汁采纳,获得10
24秒前
Ava应助wjw采纳,获得10
25秒前
26秒前
27秒前
moomomomomo完成签到,获得积分10
28秒前
zimu012完成签到,获得积分10
29秒前
Leo完成签到 ,获得积分10
31秒前
32秒前
33秒前
超级的绿凝完成签到 ,获得积分10
33秒前
CipherSage应助重要的道之采纳,获得20
34秒前
123发布了新的文献求助10
34秒前
李什么完成签到,获得积分10
34秒前
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905