HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery

概括性 计算机科学 电池(电) 健康状况 人工神经网络 人工智能 特征(语言学) 数据挖掘 机器学习 功率(物理) 心理学 物理 语言学 哲学 量子力学 心理治疗师
作者
Mingyu Gao,Zhengyi Bao,Chunxiang Zhu,Jiahao Jiang,Zhiwei He,Zhekang Dong,Yining Song
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 2577-2590 被引量:6
标识
DOI:10.1016/j.egyr.2023.01.109
摘要

Accurate estimating the state of health (SOH) of lithium-ion battery plays a significant role in the safe operation of electric vehicles. With the development of deep learning, neural network-based methods have attracted much attention from researchers. While most of the existing SOH estimation methods are built by a single network, failing to sufficiently extract data information, and thus leading to the limited accuracy and generality (i.e., such a single network makes it difficult to estimate the SOH of battery, with different types and working conditions). Towards this issue, a novel hybrid network, called HFCM (Hierarchical Feature Coupled Module)-LSTM (Long–short-term memory), is designed to fully extract the original data information, making it more accurate to estimate the SOH of battery, with different types and working conditions. Specifically, the proposed HFCM-LSTM mainly consists of two components, HCFM and LSTM. The HCFM is proposed to comprehensively extract the original data feature information from the original samples. On the other hand, following the HFCM, a LSTM module is employed to model time series information. Based on this HFCM-LSTM network, the data obtained directly from the battery are fed into the model as input, enabling an end-to-end SOH estimation of the battery. A series of experiments are conducted on both NASA dataset and Oxford dataset, the experimental results demonstrate that the proposed SOH estimation algorithm outperforms several existing state-of-the-art methods, in terms of accuracy and generality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
4秒前
blackddl应助guo采纳,获得10
4秒前
xinran发布了新的文献求助30
4秒前
hongyi66完成签到 ,获得积分10
4秒前
无铭亚空发布了新的文献求助10
6秒前
陈123456完成签到,获得积分20
7秒前
8秒前
9秒前
简单雨安发布了新的文献求助10
9秒前
lr发布了新的文献求助100
10秒前
小二郎应助派123采纳,获得10
10秒前
Yexidong完成签到,获得积分10
11秒前
wxyshare应助xinran采纳,获得10
12秒前
可心儿完成签到,获得积分10
12秒前
彩色碧菡完成签到,获得积分10
12秒前
13秒前
鱼yu完成签到,获得积分10
13秒前
ghhhn完成签到,获得积分10
18秒前
zhou完成签到 ,获得积分10
19秒前
ZZ发布了新的文献求助10
19秒前
一颗竹笋发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
电量满格中完成签到 ,获得积分10
22秒前
欢呼晓博发布了新的文献求助10
22秒前
Planck完成签到,获得积分10
22秒前
情怀应助刘文静采纳,获得10
22秒前
萧狗子完成签到,获得积分10
22秒前
24秒前
Planck发布了新的文献求助10
26秒前
清水发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
DrJzz发布了新的文献求助20
27秒前
joyee完成签到,获得积分10
28秒前
派123发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700