亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery

概括性 计算机科学 电池(电) 健康状况 人工神经网络 人工智能 特征(语言学) 数据挖掘 机器学习 功率(物理) 心理学 物理 语言学 哲学 量子力学 心理治疗师
作者
Mingyu Gao,Zhengyi Bao,Chunxiang Zhu,Jiahao Jiang,Zhiwei He,Zhekang Dong,Yining Song
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 2577-2590 被引量:6
标识
DOI:10.1016/j.egyr.2023.01.109
摘要

Accurate estimating the state of health (SOH) of lithium-ion battery plays a significant role in the safe operation of electric vehicles. With the development of deep learning, neural network-based methods have attracted much attention from researchers. While most of the existing SOH estimation methods are built by a single network, failing to sufficiently extract data information, and thus leading to the limited accuracy and generality (i.e., such a single network makes it difficult to estimate the SOH of battery, with different types and working conditions). Towards this issue, a novel hybrid network, called HFCM (Hierarchical Feature Coupled Module)-LSTM (Long–short-term memory), is designed to fully extract the original data information, making it more accurate to estimate the SOH of battery, with different types and working conditions. Specifically, the proposed HFCM-LSTM mainly consists of two components, HCFM and LSTM. The HCFM is proposed to comprehensively extract the original data feature information from the original samples. On the other hand, following the HFCM, a LSTM module is employed to model time series information. Based on this HFCM-LSTM network, the data obtained directly from the battery are fed into the model as input, enabling an end-to-end SOH estimation of the battery. A series of experiments are conducted on both NASA dataset and Oxford dataset, the experimental results demonstrate that the proposed SOH estimation algorithm outperforms several existing state-of-the-art methods, in terms of accuracy and generality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
矮冬瓜完成签到 ,获得积分10
13秒前
火星上仰发布了新的文献求助10
15秒前
jerry完成签到,获得积分10
15秒前
华仔应助虞美人采纳,获得10
38秒前
咄咄完成签到 ,获得积分10
42秒前
小蘑菇应助zilhua采纳,获得10
48秒前
深情安青应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
狂野吐司完成签到 ,获得积分10
1分钟前
姚老表完成签到,获得积分10
1分钟前
SciGPT应助拒绝去偏旁采纳,获得10
1分钟前
火星上仰完成签到,获得积分10
1分钟前
hzk完成签到,获得积分10
1分钟前
1分钟前
1分钟前
烟消云散完成签到,获得积分10
1分钟前
2分钟前
英俊的铭应助拒绝去偏旁采纳,获得10
2分钟前
小草发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
虞美人发布了新的文献求助10
2分钟前
小泽发布了新的文献求助10
2分钟前
搜集达人应助lyy采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
HaCat完成签到,获得积分10
3分钟前
小泽完成签到,获得积分10
3分钟前
Lucas应助HaCat采纳,获得10
3分钟前
3分钟前
拒绝去偏旁完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634708
求助须知:如何正确求助?哪些是违规求助? 4732088
关于积分的说明 14989018
捐赠科研通 4792423
什么是DOI,文献DOI怎么找? 2559546
邀请新用户注册赠送积分活动 1519831
关于科研通互助平台的介绍 1479945