HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery

概括性 计算机科学 电池(电) 健康状况 人工神经网络 人工智能 特征(语言学) 数据挖掘 机器学习 功率(物理) 心理学 物理 语言学 哲学 量子力学 心理治疗师
作者
Mingyu Gao,Zhengyi Bao,Chunxiang Zhu,Jiahao Jiang,Zhiwei He,Zhekang Dong,Yining Song
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 2577-2590 被引量:6
标识
DOI:10.1016/j.egyr.2023.01.109
摘要

Accurate estimating the state of health (SOH) of lithium-ion battery plays a significant role in the safe operation of electric vehicles. With the development of deep learning, neural network-based methods have attracted much attention from researchers. While most of the existing SOH estimation methods are built by a single network, failing to sufficiently extract data information, and thus leading to the limited accuracy and generality (i.e., such a single network makes it difficult to estimate the SOH of battery, with different types and working conditions). Towards this issue, a novel hybrid network, called HFCM (Hierarchical Feature Coupled Module)-LSTM (Long–short-term memory), is designed to fully extract the original data information, making it more accurate to estimate the SOH of battery, with different types and working conditions. Specifically, the proposed HFCM-LSTM mainly consists of two components, HCFM and LSTM. The HCFM is proposed to comprehensively extract the original data feature information from the original samples. On the other hand, following the HFCM, a LSTM module is employed to model time series information. Based on this HFCM-LSTM network, the data obtained directly from the battery are fed into the model as input, enabling an end-to-end SOH estimation of the battery. A series of experiments are conducted on both NASA dataset and Oxford dataset, the experimental results demonstrate that the proposed SOH estimation algorithm outperforms several existing state-of-the-art methods, in terms of accuracy and generality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JL完成签到,获得积分10
1秒前
1秒前
1秒前
Runtu1121完成签到,获得积分10
1秒前
情怀应助yy采纳,获得10
1秒前
阿然完成签到,获得积分10
2秒前
安全平静完成签到,获得积分10
3秒前
海比天蓝完成签到,获得积分10
3秒前
尚白swqd发布了新的文献求助10
3秒前
避橙完成签到,获得积分10
3秒前
聪慧的如彤完成签到,获得积分10
5秒前
李健应助shuangcheng采纳,获得10
5秒前
赘婿应助梵高的向日葵采纳,获得10
5秒前
sui发布了新的文献求助10
5秒前
5秒前
萝卜完成签到 ,获得积分10
6秒前
问题多多完成签到 ,获得积分10
6秒前
tzq完成签到,获得积分20
7秒前
ANG完成签到 ,获得积分10
7秒前
cy完成签到,获得积分10
7秒前
文艺的冬卉完成签到,获得积分20
8秒前
缥缈芷珍完成签到,获得积分10
8秒前
天天快乐应助haha采纳,获得10
8秒前
wodetaiyangLLL完成签到,获得积分10
8秒前
8秒前
心照发布了新的文献求助10
8秒前
汉堡包应助wendy采纳,获得10
8秒前
只影有你完成签到,获得积分10
8秒前
fdx完成签到,获得积分10
8秒前
ANK完成签到,获得积分10
8秒前
刘雨森完成签到 ,获得积分10
9秒前
Hannah完成签到,获得积分10
9秒前
9秒前
deer完成签到,获得积分10
9秒前
林早上完成签到,获得积分10
9秒前
sansronds完成签到,获得积分10
9秒前
123完成签到 ,获得积分10
10秒前
ding应助干净芹菜采纳,获得10
10秒前
小林完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402085
求助须知:如何正确求助?哪些是违规求助? 4520652
关于积分的说明 14080976
捐赠科研通 4434110
什么是DOI,文献DOI怎么找? 2434394
邀请新用户注册赠送积分活动 1426603
关于科研通互助平台的介绍 1405349