HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery

概括性 计算机科学 电池(电) 健康状况 人工神经网络 人工智能 特征(语言学) 数据挖掘 机器学习 功率(物理) 心理学 物理 语言学 哲学 量子力学 心理治疗师
作者
Mingyu Gao,Zhengyi Bao,Chunxiang Zhu,Jiahao Jiang,Zhiwei He,Zhekang Dong,Yining Song
出处
期刊:Energy Reports [Elsevier BV]
卷期号:9: 2577-2590 被引量:6
标识
DOI:10.1016/j.egyr.2023.01.109
摘要

Accurate estimating the state of health (SOH) of lithium-ion battery plays a significant role in the safe operation of electric vehicles. With the development of deep learning, neural network-based methods have attracted much attention from researchers. While most of the existing SOH estimation methods are built by a single network, failing to sufficiently extract data information, and thus leading to the limited accuracy and generality (i.e., such a single network makes it difficult to estimate the SOH of battery, with different types and working conditions). Towards this issue, a novel hybrid network, called HFCM (Hierarchical Feature Coupled Module)-LSTM (Long–short-term memory), is designed to fully extract the original data information, making it more accurate to estimate the SOH of battery, with different types and working conditions. Specifically, the proposed HFCM-LSTM mainly consists of two components, HCFM and LSTM. The HCFM is proposed to comprehensively extract the original data feature information from the original samples. On the other hand, following the HFCM, a LSTM module is employed to model time series information. Based on this HFCM-LSTM network, the data obtained directly from the battery are fed into the model as input, enabling an end-to-end SOH estimation of the battery. A series of experiments are conducted on both NASA dataset and Oxford dataset, the experimental results demonstrate that the proposed SOH estimation algorithm outperforms several existing state-of-the-art methods, in terms of accuracy and generality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助酷炫的平蝶采纳,获得10
2秒前
3秒前
壮观完成签到,获得积分10
4秒前
嘟嘟包完成签到 ,获得积分10
4秒前
6秒前
丘比特应助fixing采纳,获得10
6秒前
个性的雪旋完成签到 ,获得积分10
8秒前
9秒前
脑洞疼应助小雨采纳,获得10
9秒前
liujx发布了新的文献求助10
11秒前
SXM完成签到,获得积分10
12秒前
13秒前
乖猫要努力应助鳗鱼文涛采纳,获得10
13秒前
科研NM完成签到,获得积分20
13秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
ww发布了新的文献求助10
17秒前
科目三应助YangTzeePlus采纳,获得10
17秒前
18秒前
阔达的以丹完成签到,获得积分10
18秒前
啊达拉崩吧完成签到,获得积分10
18秒前
fixing发布了新的文献求助10
19秒前
19秒前
杨小六完成签到,获得积分10
20秒前
mandalorian完成签到,获得积分10
20秒前
蟹黄包包发布了新的文献求助10
21秒前
CodeCraft应助axiba采纳,获得10
22秒前
开坦克的贝塔完成签到,获得积分10
27秒前
yx_cheng应助何以解忧采纳,获得10
30秒前
蟹黄包包完成签到,获得积分20
30秒前
31秒前
32秒前
34秒前
halogen发布了新的文献求助10
35秒前
36秒前
36秒前
da发布了新的文献求助10
37秒前
38秒前
39秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182