HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery

概括性 计算机科学 电池(电) 健康状况 人工神经网络 人工智能 特征(语言学) 数据挖掘 机器学习 功率(物理) 心理学 物理 语言学 哲学 量子力学 心理治疗师
作者
Mingyu Gao,Zhengyi Bao,Chunxiang Zhu,Jiahao Jiang,Zhiwei He,Zhekang Dong,Yining Song
出处
期刊:Energy Reports [Elsevier]
卷期号:9: 2577-2590 被引量:6
标识
DOI:10.1016/j.egyr.2023.01.109
摘要

Accurate estimating the state of health (SOH) of lithium-ion battery plays a significant role in the safe operation of electric vehicles. With the development of deep learning, neural network-based methods have attracted much attention from researchers. While most of the existing SOH estimation methods are built by a single network, failing to sufficiently extract data information, and thus leading to the limited accuracy and generality (i.e., such a single network makes it difficult to estimate the SOH of battery, with different types and working conditions). Towards this issue, a novel hybrid network, called HFCM (Hierarchical Feature Coupled Module)-LSTM (Long–short-term memory), is designed to fully extract the original data information, making it more accurate to estimate the SOH of battery, with different types and working conditions. Specifically, the proposed HFCM-LSTM mainly consists of two components, HCFM and LSTM. The HCFM is proposed to comprehensively extract the original data feature information from the original samples. On the other hand, following the HFCM, a LSTM module is employed to model time series information. Based on this HFCM-LSTM network, the data obtained directly from the battery are fed into the model as input, enabling an end-to-end SOH estimation of the battery. A series of experiments are conducted on both NASA dataset and Oxford dataset, the experimental results demonstrate that the proposed SOH estimation algorithm outperforms several existing state-of-the-art methods, in terms of accuracy and generality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石濑汤汤完成签到,获得积分10
刚刚
KELE完成签到,获得积分10
刚刚
归尘发布了新的文献求助10
1秒前
YUANBIAO发布了新的文献求助10
1秒前
东华帝君完成签到,获得积分10
1秒前
王土豆完成签到,获得积分10
1秒前
杰杰小杰发布了新的文献求助10
1秒前
ucas应助北冥风采纳,获得10
1秒前
CodeCraft应助月关采纳,获得10
2秒前
领导范儿应助ida采纳,获得10
2秒前
善学以致用应助Anson采纳,获得10
2秒前
韩妙发布了新的文献求助10
2秒前
2秒前
英俊的铭应助JK157采纳,获得10
3秒前
3秒前
3秒前
希望天下0贩的0应助wblr采纳,获得10
3秒前
4秒前
辣椒油发布了新的文献求助10
4秒前
贪玩靖柔完成签到,获得积分10
4秒前
111完成签到,获得积分10
5秒前
5秒前
欢喜发布了新的文献求助10
5秒前
打打应助mario采纳,获得10
6秒前
7秒前
sak发布了新的文献求助10
7秒前
8秒前
cc完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
smottom应助jky45采纳,获得10
9秒前
柯友卉完成签到,获得积分10
9秒前
冷艳咖啡豆完成签到,获得积分10
9秒前
酷波er应助yiyi采纳,获得30
10秒前
香菜鱼发布了新的文献求助10
10秒前
韩妙完成签到,获得积分20
10秒前
汉堡包应助zhz采纳,获得10
10秒前
KZxxx完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624579
求助须知:如何正确求助?哪些是违规求助? 4710376
关于积分的说明 14950345
捐赠科研通 4778512
什么是DOI,文献DOI怎么找? 2553318
邀请新用户注册赠送积分活动 1515240
关于科研通互助平台的介绍 1475577