Probabilistic Attention Based on Gaussian Processes for Deep Multiple Instance Learning

过度拟合 计算机科学 人工智能 概率逻辑 机器学习 MNIST数据库 高斯过程 稳健性(进化) 深度学习 高斯分布 不确定度量化 人工神经网络 量子力学 基因 生物化学 物理 化学
作者
Arne Schmidt,Pablo Morales-Álvarez,Rafael Molina
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tnnls.2023.3245329
摘要

Multiple instance learning (MIL) is a weakly supervised learning paradigm that is becoming increasingly popular because it requires less labeling effort than fully supervised methods. This is especially interesting for areas where the creation of large annotated datasets remains challenging, as in medicine. Although recent deep learning MIL approaches have obtained state-of-the-art results, they are fully deterministic and do not provide uncertainty estimations for the predictions. In this work, we introduce the attention Gaussian process (AGP) model, a novel probabilistic attention mechanism based on Gaussian processes (GPs) for deep MIL. AGP provides accurate bag-level predictions as well as instance-level explainability and can be trained end-to-end. Moreover, its probabilistic nature guarantees robustness to overfit on small datasets and uncertainty estimations for the predictions. The latter is especially important in medical applications, where decisions have a direct impact on the patient's health. The proposed model is validated experimentally as follows. First, its behavior is illustrated in two synthetic MIL experiments based on the well-known MNIST and CIFAR-10 datasets, respectively. Then, it is evaluated in three different real-world cancer detection experiments. AGP outperforms state-of-the-art MIL approaches, including deterministic deep learning ones. It shows a strong performance even on a small dataset with less than 100 labels and generalizes better than competing methods on an external test set. Moreover, we experimentally show that predictive uncertainty correlates with the risk of wrong predictions, and therefore it is a good indicator of reliability in practice. Our code is publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZZ发布了新的文献求助10
1秒前
不过尔尔发布了新的文献求助10
1秒前
烩面大师发布了新的文献求助10
1秒前
1秒前
bamboo发布了新的文献求助10
1秒前
好运连连完成签到 ,获得积分10
1秒前
万能图书馆应助砂糖采纳,获得10
2秒前
2秒前
打打应助一头小眠羊采纳,获得10
2秒前
思源应助煤灰采纳,获得10
2秒前
月月呀完成签到,获得积分10
2秒前
dudu发布了新的文献求助10
2秒前
忍冬发布了新的文献求助30
4秒前
Rondab应助bai采纳,获得10
5秒前
5秒前
慕玖淇发布了新的文献求助10
5秒前
山山发布了新的文献求助10
5秒前
阿伦发布了新的文献求助10
5秒前
zwq完成签到,获得积分10
5秒前
ivying0209完成签到,获得积分10
5秒前
全齐完成签到,获得积分10
6秒前
musejie应助ilmiss采纳,获得20
6秒前
余余完成签到,获得积分10
6秒前
田様应助热情的戾采纳,获得10
6秒前
内向寒云发布了新的文献求助10
7秒前
彭于晏应助PPPYYY采纳,获得10
7秒前
7秒前
全齐发布了新的文献求助10
7秒前
搜集达人应助东风采纳,获得10
8秒前
leihaha完成签到,获得积分10
8秒前
9秒前
顾矜应助顺心的书包采纳,获得10
9秒前
9秒前
9秒前
小刘哥加油完成签到 ,获得积分10
10秒前
10秒前
10秒前
顾矜应助abcd_1067采纳,获得10
10秒前
QC完成签到,获得积分10
10秒前
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002