Auto Diagnosis of Parkinson's Disease Via a Deep Learning Model Based on Mixed Emotional Facial Expressions

面部表情 人工智能 疾病 计算机科学 帕金森病 深度学习 模式识别(心理学) 自然语言处理 认知心理学 心理学 医学 病理
作者
Wei Huang,Wenqiang Xu,Renjie Wan,Peng Zhang,Yufei Zha,Meng Pang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2547-2557 被引量:10
标识
DOI:10.1109/jbhi.2023.3239780
摘要

Parkinson's disease (PD) is a common degenerative disease of the nervous system in the elderly. The early diagnosis of PD is very important for potential patients to receive prompt treatment and avoid the aggravation of the disease. Recent studies have found that PD patients always suffer from emotional expression disorder, thus forming the characteristics of "masked faces". Based on this, we thus propose an auto PD diagnosis method based on mixed emotional facial expressions in the paper. Specifically, the proposed method is cast into four steps: Firstly, we synthesize virtual face images containing six basic expressions ( i.e. , anger, disgust, fear, happiness, sadness, and surprise) via generative adversarial learning, in order to approximate the premorbid expressions of PD patients; Secondly, we design an effective screening scheme to assess the quality of the above synthesized facial expression images and then shortlist the high-quality ones; Thirdly, we train a deep feature extractor accompanied with a facial expression classifier based on the mixture of the original facial expression images of the PD patients, the high-quality synthesized facial expression images of PD patients, and the normal facial expression images from other public face datasets; Finally, with the well-trained deep feature extractor, we thus adopt it to extract the latent expression features for six facial expression images of a potential PD patient to conduct PD/non-PD prediction. To show real-world impacts, we also collected a new facial expression dataset of PD patients in collaboration with a hospital. Extensive experiments are conducted to validate the effectiveness of the proposed method for PD diagnosis and facial expression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫清涟应助kkkkkk采纳,获得10
刚刚
星辰大海应助刘丰采纳,获得10
1秒前
炬火发布了新的文献求助10
1秒前
1秒前
繁星发布了新的文献求助10
2秒前
迷路初兰发布了新的文献求助10
2秒前
桐桐应助xwtx采纳,获得10
3秒前
3秒前
3秒前
研友_VZG7GZ应助小萌子采纳,获得10
4秒前
5秒前
思源应助W sir采纳,获得10
5秒前
6秒前
6秒前
史健发布了新的文献求助10
6秒前
深情安青应助bismarck7采纳,获得10
7秒前
顾矜应助柴火妞采纳,获得10
7秒前
莹yy发布了新的文献求助10
8秒前
无限长颈鹿关注了科研通微信公众号
9秒前
叁壹捌发布了新的文献求助10
10秒前
10秒前
云阔发布了新的文献求助10
11秒前
11秒前
wawaoooo关注了科研通微信公众号
14秒前
14秒前
15秒前
欢呼诗柳发布了新的文献求助10
15秒前
星辰大海应助坦率道之采纳,获得10
15秒前
16秒前
叁壹捌完成签到,获得积分10
17秒前
毛豆应助sholai采纳,获得10
17秒前
18秒前
18秒前
小萌子发布了新的文献求助10
19秒前
19秒前
Owen应助李政浩采纳,获得10
19秒前
21秒前
llllh发布了新的文献求助200
21秒前
小蘑菇应助小叶采纳,获得10
21秒前
22秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422411
求助须知:如何正确求助?哪些是违规求助? 3022716
关于积分的说明 8902311
捐赠科研通 2710160
什么是DOI,文献DOI怎么找? 1486341
科研通“疑难数据库(出版商)”最低求助积分说明 687027
邀请新用户注册赠送积分活动 682261