亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Auto Diagnosis of Parkinson's Disease Via a Deep Learning Model Based on Mixed Emotional Facial Expressions

面部表情 人工智能 疾病 计算机科学 帕金森病 深度学习 模式识别(心理学) 自然语言处理 认知心理学 心理学 医学 病理
作者
Wei Huang,Wenqiang Xu,Renjie Wan,Peng Zhang,Yufei Zha,Meng Pang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 2547-2557 被引量:21
标识
DOI:10.1109/jbhi.2023.3239780
摘要

Parkinson's disease (PD) is a common degenerative disease of the nervous system in the elderly. The early diagnosis of PD is very important for potential patients to receive prompt treatment and avoid the aggravation of the disease. Recent studies have found that PD patients always suffer from emotional expression disorder, thus forming the characteristics of "masked faces". Based on this, we thus propose an auto PD diagnosis method based on mixed emotional facial expressions in the paper. Specifically, the proposed method is cast into four steps: Firstly, we synthesize virtual face images containing six basic expressions ( i.e. , anger, disgust, fear, happiness, sadness, and surprise) via generative adversarial learning, in order to approximate the premorbid expressions of PD patients; Secondly, we design an effective screening scheme to assess the quality of the above synthesized facial expression images and then shortlist the high-quality ones; Thirdly, we train a deep feature extractor accompanied with a facial expression classifier based on the mixture of the original facial expression images of the PD patients, the high-quality synthesized facial expression images of PD patients, and the normal facial expression images from other public face datasets; Finally, with the well-trained deep feature extractor, we thus adopt it to extract the latent expression features for six facial expression images of a potential PD patient to conduct PD/non-PD prediction. To show real-world impacts, we also collected a new facial expression dataset of PD patients in collaboration with a hospital. Extensive experiments are conducted to validate the effectiveness of the proposed method for PD diagnosis and facial expression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
Lina完成签到,获得积分10
11秒前
15秒前
深情安青应助科研通管家采纳,获得10
16秒前
Re发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
38秒前
于yu完成签到 ,获得积分10
1分钟前
1分钟前
开心完成签到 ,获得积分10
1分钟前
Re发布了新的文献求助10
1分钟前
sidashu完成签到,获得积分10
1分钟前
无花果应助Re采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
自律发布了新的文献求助10
3分钟前
脑洞疼应助wzy采纳,获得10
3分钟前
比格大王应助clearlove采纳,获得10
3分钟前
3分钟前
wzy发布了新的文献求助10
3分钟前
悟空爱吃酥橙完成签到,获得积分10
3分钟前
3分钟前
自律完成签到,获得积分10
3分钟前
ma121完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
刺1656发布了新的文献求助10
4分钟前
4分钟前
jiangmi完成签到,获得积分10
5分钟前
Sene完成签到,获得积分10
5分钟前
andrele应助科研通管家采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
感动初蓝完成签到 ,获得积分10
6分钟前
橘橘橘子皮完成签到 ,获得积分10
6分钟前
6分钟前
蒙恩Maria发布了新的文献求助10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671215
求助须知:如何正确求助?哪些是违规求助? 4912385
关于积分的说明 15134222
捐赠科研通 4829985
什么是DOI,文献DOI怎么找? 2586585
邀请新用户注册赠送积分活动 1540226
关于科研通互助平台的介绍 1498443