Robustness of networks with dependency groups considering fluctuating loads and recovery behaviors

级联故障 稳健性(进化) 依赖关系(UML) 计算机科学 相互依存的网络 复杂网络 分布式计算 可靠性工程 工程类 电力系统 人工智能 量子力学 基因 生物化学 物理 万维网 功率(物理) 化学
作者
Zhou Lin,Xiaogang Qi,Lifang Liu
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:613: 128505-128505
标识
DOI:10.1016/j.physa.2023.128505
摘要

Dependency groups describe different characteristics of interactions among nodes, which provide an emerging way to explore the dynamical behaviors of complex networks. To study the effects of dependency groups on the robustness of flow networks, this paper proposes a cascading failure model of networks which combines fluctuating loads and dependency groups. Different from the previous hypothesis that the dependency group is completely invalid once one node in the same dependency group fails, in this paper, the failure and recovery mechanism of dependency groups under certain rules to prevent catastrophic collapses of networks is proposed. To describe the resistance of network to damage caused by cascading failures, we introduce the overload coefficient to characterize the overload state when the node handles excess loads. Considering the network cost should be controlled within a reasonable range while improving network robustness, the cost index based on the relationship between the load and capacity of the node is established. By theoretically analyzing the network cost, the relationship between the network robustness and network cost is discussed when the network cascading process happens. The proposed model is employed to study the dynamics of cascading failures evolution in BA network, ER network and two actual networks. Simulation results reveal the effects of traffic flows and dependency groups on the dynamic loads propagation of cascading failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打打应助秋雨采纳,获得10
刚刚
猪猪侠发布了新的文献求助10
1秒前
ACTIVE发布了新的文献求助30
1秒前
糊涂的勒完成签到,获得积分10
1秒前
苹果诗筠完成签到 ,获得积分10
2秒前
JamesPei应助VV采纳,获得10
3秒前
从心从心完成签到,获得积分10
3秒前
zzt完成签到,获得积分10
4秒前
Sylvia完成签到,获得积分10
4秒前
5秒前
传奇3应助猪猪侠采纳,获得10
7秒前
zoe完成签到,获得积分10
7秒前
大模型应助雨天采纳,获得10
9秒前
陈兵完成签到,获得积分10
9秒前
10秒前
SYLH应助chunjun采纳,获得30
10秒前
机智的山晴完成签到,获得积分10
11秒前
斯文败类应助Kikua采纳,获得10
12秒前
小马甲应助ACTIVE采纳,获得10
13秒前
zzt发布了新的文献求助10
13秒前
张雷应助Dorian采纳,获得20
14秒前
娇气的幼南完成签到 ,获得积分10
16秒前
16秒前
17秒前
Hello应助163采纳,获得10
18秒前
研友_RLN2yL完成签到,获得积分20
20秒前
无影无踪屁完成签到,获得积分10
21秒前
Much发布了新的文献求助10
21秒前
21秒前
22秒前
ACTIVE完成签到,获得积分10
24秒前
26秒前
26秒前
喝奶茶也要瘦瘦完成签到,获得积分20
26秒前
陈兵发布了新的文献求助10
26秒前
JILIGULU完成签到,获得积分10
27秒前
彭于晏应助Lizzy采纳,获得10
27秒前
27秒前
脑洞疼应助IVY采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967402
求助须知:如何正确求助?哪些是违规求助? 3512674
关于积分的说明 11164607
捐赠科研通 3247562
什么是DOI,文献DOI怎么找? 1793955
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498