Two-Dimensional Energy Histograms as Features for Machine Learning to Predict Adsorption in Diverse Nanoporous Materials

纳米孔 吸附 可解释性 直方图 材料科学 计算机科学 生物系统 化学 纳米技术 机器学习 人工智能 物理化学 图像(数学) 生物
作者
Kaihang Shi,Zhao Li,Dylan M. Anstine,Dai Tang,Coray M. Colina,David S. Sholl,J. Ilja Siepmann,Randall Q. Snurr
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (14): 4568-4583 被引量:25
标识
DOI:10.1021/acs.jctc.2c00798
摘要

A major obstacle for machine learning (ML) in chemical science is the lack of physically informed feature representations that provide both accurate prediction and easy interpretability of the ML model. In this work, we describe adsorption systems using novel two-dimensional energy histogram (2D-EH) features, which are obtained from the probe-adsorbent energies and energy gradients at grid points located throughout the adsorbent. The 2D-EH features encode both energetic and structural information of the material and lead to highly accurate ML models (coefficient of determination R2 ∼ 0.94-0.99) for predicting single-component adsorption capacity in metal-organic frameworks (MOFs). We consider the adsorption of spherical molecules (Kr and Xe), linear alkanes with a wide range of aspect ratios (ethane, propane, n-butane, and n-hexane), and a branched alkane (2,2-dimethylbutane) over a wide range of temperatures and pressures. The interpretable 2D-EH features enable the ML model to learn the basic physics of adsorption in pores from the training data. We show that these MOF-data-trained ML models are transferrable to different families of amorphous nanoporous materials. We also identify several adsorption systems where capillary condensation occurs, and ML predictions are more challenging. Nevertheless, our 2D-EH features still outperform structural features including those derived from persistent homology. The novel 2D-EH features may help accelerate the discovery and design of advanced nanoporous materials using ML for gas storage and separation in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子鱼发布了新的文献求助10
1秒前
Jello发布了新的文献求助10
3秒前
4秒前
Chirstina完成签到,获得积分10
5秒前
5秒前
Akim应助王路飞采纳,获得10
7秒前
Prime完成签到,获得积分10
7秒前
sunrase发布了新的文献求助30
7秒前
7秒前
PPP完成签到,获得积分10
8秒前
单薄归尘完成签到 ,获得积分10
8秒前
8秒前
轨迹完成签到,获得积分10
9秒前
华仔应助可靠的凌波采纳,获得10
9秒前
百浪多息发布了新的文献求助10
10秒前
Owen应助Jello采纳,获得10
10秒前
Ryan完成签到,获得积分10
11秒前
爱健身的小海豹完成签到,获得积分10
11秒前
11秒前
胡胡完成签到,获得积分10
12秒前
filter发布了新的文献求助10
14秒前
遗迹小白完成签到,获得积分10
14秒前
搞怪平凡完成签到,获得积分20
15秒前
Yolo完成签到 ,获得积分10
15秒前
TY发布了新的文献求助10
16秒前
Hello应助LXYang采纳,获得10
17秒前
17秒前
萝卜干完成签到,获得积分10
18秒前
18秒前
20秒前
乌啦啦发布了新的文献求助10
21秒前
filter完成签到,获得积分10
21秒前
巫马小霜发布了新的文献求助10
22秒前
科研通AI2S应助百浪多息采纳,获得10
22秒前
Ava应助百浪多息采纳,获得10
22秒前
TYM发布了新的文献求助10
23秒前
TY完成签到,获得积分20
23秒前
王路飞完成签到,获得积分10
24秒前
一只虎斑猫完成签到,获得积分10
24秒前
Nicole发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023